/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #pragma once #include #include "kernel/expr.h" namespace lean { /** \brief Replace the expressions s[0], ..., s[n-1] in e with var(n-1), ..., var(0). Structural equality is used to compare subexpressions of e with the s[i]'s. \pre s[0], ..., s[n-1] must be closed expressions (i.e., no free variables). */ expr abstract(expr const & e, unsigned n, expr const * s); inline expr abstract(expr const & e, expr const & s) { return abstract(e, 1, &s); } inline expr abstract(expr const & e, std::initializer_list const & l) { return abstract(e, l.size(), l.begin()); } /** \brief Replace s with variable #i in the given expression. \pre s is closed */ expr abstract(expr const & e, expr const & s, unsigned i); /** \brief Replace the expressions s[0], ..., s[n-1] in e with var(n-1), ..., var(0). Pointer comparison is used to compare subexpressions of e with the s[i]'s. \pre s[0], ..., s[n-1] must be closed expressions (i.e., no free variables). */ expr abstract_p(expr const & e, unsigned n, expr const * s); inline expr abstract_p(expr const & e, expr const & s) { return abstract_p(e, 1, &s); } /** \brief Create a lambda expression (lambda (x : t) b), the term b is abstracted using abstract(b, constant(x)). */ inline expr Fun(name const & n, expr const & t, expr const & b, binder_info const & bi = binder_info()) { return mk_lambda(n, t, abstract(b, mk_constant(n)), bi); } inline expr Fun(expr const & n, expr const & t, expr const & b, binder_info const & bi = binder_info()) { return mk_lambda(const_name(n), t, abstract(b, n), bi); } inline expr Fun(std::pair const & p, expr const & b) { return Fun(p.first, p.second, b); } expr Fun(std::initializer_list> const & l, expr const & b); /** \brief Create a lambda-expression by abstracting the given local constants over b */ expr Fun(unsigned num, expr const * locals, expr const & b); template expr Fun(T const & locals, expr const & b) { return Fun(locals.size(), locals.data(), b); } inline expr Fun(expr const & local, expr const & b) { return Fun(1, &local, b); } /** \brief Create a Pi expression (pi (x : t) b), the term b is abstracted using abstract(b, constant(x)). */ inline expr Pi(name const & n, expr const & t, expr const & b, binder_info const & bi = binder_info()) { return mk_pi(n, t, abstract(b, mk_constant(n)), bi); } inline expr Pi(expr const & n, expr const & t, expr const & b, binder_info const & bi = binder_info()) { return mk_pi(const_name(n), t, abstract(b, n), bi); } inline expr Pi(std::pair const & p, expr const & b) { return Pi(p.first, p.second, b); } expr Pi(std::initializer_list> const & l, expr const & b); /** \brief Create a Pi-expression by abstracting the given local constants over b */ expr Pi(unsigned num, expr const * locals, expr const & b); template expr Pi(T const & locals, expr const & b) { return Pi(locals.size(), locals.data(), b); } inline expr Pi(expr const & local, expr const & b) { return Pi(1, &local, b); } /** - \brief Create a Let expression (Let x := v in b), the term b is abstracted using abstract(b, x). -*/ inline expr Let(name const & x, expr const & t, expr const & v, expr const & b) { return mk_let(x, t, v, abstract(b, mk_constant(x))); } inline expr Let(expr const & x, expr const & t, expr const & v, expr const & b) { return mk_let(const_name(x), t, v, abstract(b, x)); } }