/- Copyright (c) 2015 Leonardo de Moura. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.list.comb Authors: Leonardo de Moura List combinators -/ import data.list.basic open nat prod decidable function helper_tactics namespace list variables {A B C : Type} definition map (f : A → B) : list A → list B | [] := [] | (a :: l) := f a :: map l theorem map_nil (f : A → B) : map f [] = [] theorem map_cons (f : A → B) (a : A) (l : list A) : map f (a :: l) = f a :: map f l theorem map_id : ∀ l : list A, map id l = l | [] := rfl | (x::xs) := begin rewrite [map_cons, map_id] end theorem map_map (g : B → C) (f : A → B) : ∀ l, map g (map f l) = map (g ∘ f) l | [] := rfl | (a :: l) := show (g ∘ f) a :: map g (map f l) = map (g ∘ f) (a :: l), by rewrite (map_map l) theorem len_map (f : A → B) : ∀ l : list A, length (map f l) = length l | [] := by esimp | (a :: l) := show length (map f l) + 1 = length l + 1, by rewrite (len_map l) theorem mem_map {A B : Type} (f : A → B) : ∀ {a l}, a ∈ l → f a ∈ map f l | a [] i := absurd i !not_mem_nil | a (x::xs) i := or.elim (eq_or_mem_of_mem_cons i) (λ aeqx : a = x, by rewrite [aeqx, map_cons]; apply mem_cons) (λ ainxs : a ∈ xs, or.inr (mem_map ainxs)) theorem eq_of_map_const {A B : Type} {b₁ b₂ : B} : ∀ {l : list A}, b₁ ∈ map (const A b₂) l → b₁ = b₂ | [] h := absurd h !not_mem_nil | (a::l) h := or.elim (eq_or_mem_of_mem_cons h) (λ b₁eqb₂ : b₁ = b₂, b₁eqb₂) (λ b₁inl : b₁ ∈ map (const A b₂) l, eq_of_map_const b₁inl) definition map₂ (f : A → B → C) : list A → list B → list C | [] _ := [] | _ [] := [] | (x::xs) (y::ys) := f x y :: map₂ xs ys definition foldl (f : A → B → A) : A → list B → A | a [] := a | a (b :: l) := foldl (f a b) l theorem foldl_nil (f : A → B → A) (a : A) : foldl f a [] = a theorem foldl_cons (f : A → B → A) (a : A) (b : B) (l : list B) : foldl f a (b::l) = foldl f (f a b) l definition foldr (f : A → B → B) : B → list A → B | b [] := b | b (a :: l) := f a (foldr b l) theorem foldr_nil (f : A → B → B) (b : B) : foldr f b [] = b theorem foldr_cons (f : A → B → B) (b : B) (a : A) (l : list A) : foldr f b (a::l) = f a (foldr f b l) section foldl_eq_foldr -- foldl and foldr coincide when f is commutative and associative parameters {α : Type} {f : α → α → α} hypothesis (Hcomm : ∀ a b, f a b = f b a) hypothesis (Hassoc : ∀ a b c, f (f a b) c = f a (f b c)) include Hcomm Hassoc theorem foldl_eq_of_comm_of_assoc : ∀ a b l, foldl f a (b::l) = f b (foldl f a l) | a b nil := Hcomm a b | a b (c::l) := begin change (foldl f (f (f a b) c) l = f b (foldl f (f a c) l)), rewrite -foldl_eq_of_comm_of_assoc, change (foldl f (f (f a b) c) l = foldl f (f (f a c) b) l), have H₁ : f (f a b) c = f (f a c) b, by rewrite [Hassoc, Hassoc, Hcomm b c], rewrite H₁ end theorem foldl_eq_foldr : ∀ a l, foldl f a l = foldr f a l | a nil := rfl | a (b :: l) := begin rewrite foldl_eq_of_comm_of_assoc, esimp, change (f b (foldl f a l) = f b (foldr f a l)), rewrite foldl_eq_foldr end end foldl_eq_foldr theorem foldl_append (f : B → A → B) : ∀ (b : B) (l₁ l₂ : list A), foldl f b (l₁++l₂) = foldl f (foldl f b l₁) l₂ | b [] l₂ := rfl | b (a::l₁) l₂ := by rewrite [append_cons, *foldl_cons, foldl_append] theorem foldr_append (f : A → B → B) : ∀ (b : B) (l₁ l₂ : list A), foldr f b (l₁++l₂) = foldr f (foldr f b l₂) l₁ | b [] l₂ := rfl | b (a::l₁) l₂ := by rewrite [append_cons, *foldr_cons, foldr_append] definition all (l : list A) (p : A → Prop) : Prop := foldr (λ a r, p a ∧ r) true l definition any (l : list A) (p : A → Prop) : Prop := foldr (λ a r, p a ∨ r) false l theorem all_nil (p : A → Prop) : all [] p = true theorem all_cons (p : A → Prop) (a : A) (l : list A) : all (a::l) p = (p a ∧ all l p) theorem all_of_all_cons {p : A → Prop} {a : A} {l : list A} : all (a::l) p → all l p := assume h, by rewrite [all_cons at h]; exact (and.elim_right h) theorem of_all_cons {p : A → Prop} {a : A} {l : list A} : all (a::l) p → p a := assume h, by rewrite [all_cons at h]; exact (and.elim_left h) theorem all_cons_of_all {p : A → Prop} {a : A} {l : list A} : p a → all l p → all (a::l) p := assume pa alllp, and.intro pa alllp theorem all_implies {p q : A → Prop} : ∀ {l}, all l p → (∀ x, p x → q x) → all l q | [] h₁ h₂ := trivial | (a::l) h₁ h₂ := have allq : all l q, from all_implies (all_of_all_cons h₁) h₂, have qa : q a, from h₂ a (of_all_cons h₁), all_cons_of_all qa allq theorem of_mem_of_all {p : A → Prop} {a : A} : ∀ {l}, a ∈ l → all l p → p a | [] h₁ h₂ := absurd h₁ !not_mem_nil | (b::l) h₁ h₂ := or.elim (eq_or_mem_of_mem_cons h₁) (λ aeqb : a = b, by rewrite [all_cons at h₂, -aeqb at h₂]; exact (and.elim_left h₂)) (λ ainl : a ∈ l, have allp : all l p, by rewrite [all_cons at h₂]; exact (and.elim_right h₂), of_mem_of_all ainl allp) theorem any_nil (p : A → Prop) : any [] p = false theorem any_cons (p : A → Prop) (a : A) (l : list A) : any (a::l) p = (p a ∨ any l p) theorem any_of_mem (p : A → Prop) {a : A} : ∀ {l}, a ∈ l → p a → any l p | [] i h := absurd i !not_mem_nil | (b::l) i h := or.elim (eq_or_mem_of_mem_cons i) (λ aeqb : a = b, by rewrite [-aeqb]; exact (or.inl h)) (λ ainl : a ∈ l, have anyl : any l p, from any_of_mem ainl h, or.inr anyl) definition decidable_all (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (all l p) | [] := decidable_true | (a :: l) := match H a with | inl Hp₁ := match decidable_all l with | inl Hp₂ := inl (and.intro Hp₁ Hp₂) | inr Hn₂ := inr (not_and_of_not_right (p a) Hn₂) end | inr Hn := inr (not_and_of_not_left (all l p) Hn) end definition decidable_any (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (any l p) | [] := decidable_false | (a :: l) := match H a with | inl Hp := inl (or.inl Hp) | inr Hn₁ := match decidable_any l with | inl Hp₂ := inl (or.inr Hp₂) | inr Hn₂ := inr (not_or Hn₁ Hn₂) end end definition zip (l₁ : list A) (l₂ : list B) : list (A × B) := map₂ (λ a b, (a, b)) l₁ l₂ definition unzip : list (A × B) → list A × list B | [] := ([], []) | ((a, b) :: l) := match unzip l with | (la, lb) := (a :: la, b :: lb) end theorem unzip_nil : unzip (@nil (A × B)) = ([], []) theorem unzip_cons (a : A) (b : B) (l : list (A × B)) : unzip ((a, b) :: l) = match unzip l with (la, lb) := (a :: la, b :: lb) end := rfl theorem zip_unzip : ∀ (l : list (A × B)), zip (pr₁ (unzip l)) (pr₂ (unzip l)) = l | [] := rfl | ((a, b) :: l) := begin rewrite unzip_cons, have r : zip (pr₁ (unzip l)) (pr₂ (unzip l)) = l, from zip_unzip l, revert r, apply (prod.cases_on (unzip l)), intros [la, lb, r], rewrite -r end /- flat -/ definition flat (l : list (list A)) : list A := foldl append nil l /- cross product -/ section cross_product definition cross_product : list A → list B → list (A × B) | [] l₂ := [] | (a::l₁) l₂ := map (λ b, (a, b)) l₂ ++ cross_product l₁ l₂ theorem nil_cross_product_nil (l : list B) : cross_product (@nil A) l = [] theorem cross_product_cons (a : A) (l₁ : list A) (l₂ : list B) : cross_product (a::l₁) l₂ = map (λ b, (a, b)) l₂ ++ cross_product l₁ l₂ theorem cross_product_nil : ∀ (l : list A), cross_product l (@nil B) = [] | [] := rfl | (a::l) := by rewrite [cross_product_cons, map_nil, cross_product_nil] theorem eq_of_mem_map_pair₁ {a₁ a : A} {b₁ : B} {l : list B} : (a₁, b₁) ∈ map (λ b, (a, b)) l → a₁ = a := assume ain, assert h₁ : pr1 (a₁, b₁) ∈ map pr1 (map (λ b, (a, b)) l), from mem_map pr1 ain, assert h₂ : a₁ ∈ map (λb, a) l, by rewrite [map_map at h₁, ↑pr1 at h₁]; exact h₁, eq_of_map_const h₂ theorem mem_of_mem_map_pair₁ {a₁ a : A} {b₁ : B} {l : list B} : (a₁, b₁) ∈ map (λ b, (a, b)) l → b₁ ∈ l := assume ain, assert h₁ : pr2 (a₁, b₁) ∈ map pr2 (map (λ b, (a, b)) l), from mem_map pr2 ain, assert h₂ : b₁ ∈ map (λx, x) l, by rewrite [map_map at h₁, ↑pr2 at h₁]; exact h₁, by rewrite [map_id at h₂]; exact h₂ theorem mem_cross_product {a : A} {b : B} : ∀ {l₁ l₂}, a ∈ l₁ → b ∈ l₂ → (a, b) ∈ cross_product l₁ l₂ | [] l₂ h₁ h₂ := absurd h₁ !not_mem_nil | (x::l₁) l₂ h₁ h₂ := or.elim (eq_or_mem_of_mem_cons h₁) (λ aeqx : a = x, assert aux : (a, b) ∈ map (λ b, (a, b)) l₂, from mem_map _ h₂, by rewrite [-aeqx]; exact (mem_append_left _ aux)) (λ ainl₁ : a ∈ l₁, have inl₁l₂ : (a, b) ∈ cross_product l₁ l₂, from mem_cross_product ainl₁ h₂, mem_append_right _ inl₁l₂) theorem mem_of_mem_cross_product_left {a : A} {b : B} : ∀ {l₁ l₂}, (a, b) ∈ cross_product l₁ l₂ → a ∈ l₁ | [] l₂ h := absurd h !not_mem_nil | (x::l₁) l₂ h := or.elim (mem_or_mem_of_mem_append h) (λ ain : (a, b) ∈ map (λ b, (x, b)) l₂, assert aeqx : a = x, from eq_of_mem_map_pair₁ ain, by rewrite [aeqx]; exact !mem_cons) (λ ain : (a, b) ∈ cross_product l₁ l₂, have ainl₁ : a ∈ l₁, from mem_of_mem_cross_product_left ain, mem_cons_of_mem _ ainl₁) theorem mem_of_mem_cross_product_right {a : A} {b : B} : ∀ {l₁ l₂}, (a, b) ∈ cross_product l₁ l₂ → b ∈ l₂ | [] l₂ h := absurd h !not_mem_nil | (x::l₁) l₂ h := or.elim (mem_or_mem_of_mem_append h) (λ abin : (a, b) ∈ map (λ b, (x, b)) l₂, mem_of_mem_map_pair₁ abin) (λ abin : (a, b) ∈ cross_product l₁ l₂, mem_of_mem_cross_product_right abin) end cross_product end list attribute list.decidable_any [instance] attribute list.decidable_all [instance]