Set: pp::colors Set: pp::unicode Imported 'macros' Using: Nat Assumed: Induction Proved: Comm1 Proved: Comm2 theorem Comm2 : ∀ n m : ℕ, n + m = m + n := forall::intro (λ n : ℕ, Induction ◂ (λ x : ℕ, n + x == x + n) ◂ (Nat::add::zeror n ⋈ symm (Nat::add::zerol n)) ◂ forall::intro (λ m : ℕ, discharge (λ iH : n + m = m + n, Nat::add::succr n m ⋈ subst (refl (n + m + 1)) iH ⋈ symm (Nat::add::succl m n))))