/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Eilenberg MacLane spaces -/ import hit.groupoid_quotient .hopf .freudenthal .homotopy_group open algebra pointed nat eq category group algebra is_trunc iso pointed unit trunc equiv is_conn namespace EM open groupoid_quotient variable {G : Group} definition EM1 (G : Group) : Type := groupoid_quotient (Groupoid_of_Group G) definition pEM1 [constructor] (G : Group) : Type* := pointed.MK (EM1 G) (elt star) definition base : EM1 G := elt star definition pth : G → base = base := pth definition resp_mul (g h : G) : pth (g * h) = pth g ⬝ pth h := resp_comp h g definition resp_one : pth (1 : G) = idp := resp_id star definition resp_inv (g : G) : pth (g⁻¹) = (pth g)⁻¹ := resp_inv g local attribute pointed.MK pointed.carrier pEM1 EM1 [reducible] protected definition rec {P : EM1 G → Type} [H : Π(x : EM1 G), is_trunc 1 (P x)] (Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb) (Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h) (x : EM1 G) : P x := begin induction x, { induction g, exact Pb}, { induction a, induction b, exact Pp f}, { induction a, induction b, induction c, exact Pmul f g} end protected definition rec_on {P : EM1 G → Type} [H : Π(x : EM1 G), is_trunc 1 (P x)] (x : EM1 G) (Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb) (Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h) : P x := EM.rec Pb Pp Pmul x protected definition set_rec {P : EM1 G → Type} [H : Π(x : EM1 G), is_set (P x)] (Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb) (x : EM1 G) : P x := EM.rec Pb Pp !center x protected definition prop_rec {P : EM1 G → Type} [H : Π(x : EM1 G), is_prop (P x)] (Pb : P base) (x : EM1 G) : P x := EM.rec Pb !center !center x definition rec_pth {P : EM1 G → Type} [H : Π(x : EM1 G), is_trunc 1 (P x)] {Pb : P base} {Pp : Π(g : G), Pb =[pth g] Pb} (Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h) (g : G) : apd (EM.rec Pb Pp Pmul) (pth g) = Pp g := proof !rec_pth qed protected definition elim {P : Type} [is_trunc 1 P] (Pb : P) (Pp : Π(g : G), Pb = Pb) (Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) (x : EM1 G) : P := begin induction x, { exact Pb}, { exact Pp f}, { exact Pmul f g} end protected definition elim_on [reducible] {P : Type} [is_trunc 1 P] (x : EM1 G) (Pb : P) (Pp : G → Pb = Pb) (Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) : P := EM.elim Pb Pp Pmul x protected definition set_elim [reducible] {P : Type} [is_set P] (Pb : P) (Pp : G → Pb = Pb) (x : EM1 G) : P := EM.elim Pb Pp !center x protected definition prop_elim [reducible] {P : Type} [is_prop P] (Pb : P) (x : EM1 G) : P := EM.elim Pb !center !center x definition elim_pth {P : Type} [is_trunc 1 P] {Pb : P} {Pp : G → Pb = Pb} (Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) (g : G) : ap (EM.elim Pb Pp Pmul) (pth g) = Pp g := proof !elim_pth qed protected definition elim_set.{u} (Pb : Set.{u}) (Pp : Π(g : G), Pb ≃ Pb) (Pmul : Π(g h : G) (x : Pb), Pp (g * h) x = Pp h (Pp g x)) (x : EM1 G) : Set.{u} := groupoid_quotient.elim_set (λu, Pb) (λu v, Pp) (λu v w g h, proof Pmul h g qed) x theorem elim_set_pth {Pb : Set} {Pp : Π(g : G), Pb ≃ Pb} (Pmul : Π(g h : G) (x : Pb), Pp (g * h) x = Pp h (Pp g x)) (g : G) : transport (EM.elim_set Pb Pp Pmul) (pth g) = Pp g := !elim_set_pth end EM -- attribute EM.rec EM.elim [recursor 7] attribute EM.base [constructor] attribute EM.rec EM.elim [unfold 7] [recursor 7] attribute EM.rec_on EM.elim_on [unfold 4] attribute EM.set_rec EM.set_elim [unfold 6] attribute EM.prop_rec EM.prop_elim EM.elim_set [unfold 5] namespace EM open groupoid_quotient definition base_eq_base_equiv [constructor] (G : Group) : (base = base :> pEM1 G) ≃ G := !elt_eq_elt_equiv definition fundamental_group_pEM1 (G : Group) : π₁ (pEM1 G) ≃g G := begin fapply isomorphism_of_equiv, { exact trunc_equiv_trunc 0 !base_eq_base_equiv ⬝e trunc_equiv 0 G}, { intros g h, induction g with p, induction h with q, exact encode_con p q} end proposition is_trunc_pEM1 [instance] (G : Group) : is_trunc 1 (pEM1 G) := !is_trunc_groupoid_quotient proposition is_trunc_EM1 [instance] (G : Group) : is_trunc 1 (EM1 G) := !is_trunc_groupoid_quotient proposition is_conn_EM1 [instance] (G : Group) : is_conn 0 (EM1 G) := by apply @is_conn_groupoid_quotient; esimp; exact _ proposition is_conn_pEM1 [instance] (G : Group) : is_conn 0 (pEM1 G) := is_conn_EM1 G -- TODO: prove this using truncated Whitehead. definition EM1_map [unfold 7] {G : Group} {X : Type*} (e : Ω X ≃ G) (r : Πp q, e (p ⬝ q) = e p * e q) [is_conn 0 X] [is_trunc 1 X] : EM1 G → X := begin intro x, induction x using EM.elim, { exact Point X}, { note p := e⁻¹ᵉ g, exact p}, { exact inv_preserve_binary e concat mul r g h} end -- TODO -- definition EM1_equiv {G : Group} {X : Type*} (e : Ω X ≃ G) -- (r : Πp q, e (p ⬝ q) = e p * e q) [is_conn 0 X] [is_trunc 1 X] : EM1 G ≃ X := -- begin -- apply equiv.mk (EM1_map e r), -- apply whiteheads_principle 1, -- { apply is_equiv_of_is_contr}, -- { intro x n, cases n with n, -- { exact sorry}, -- { apply @is_equiv_of_is_contr, do 2 exact sorry}} -- end -- definition pequiv_pEM1 {G : Group} {X : Type*} (e : π₁ X ≃g G) [is_conn 0 X] [is_trunc 1 X] -- : X ≃* pEM1 G := -- sorry end EM open hopf susp namespace EM -- The K(G,n+1): variables (G : CommGroup) (n : ℕ) definition EM1_mul [unfold 2 3] {G : CommGroup} (x x' : EM1 G) : EM1 G := begin induction x, { exact x'}, { induction x' using EM.set_rec, { exact pth g}, { exact abstract begin apply loop_pathover, apply square_of_eq, refine !resp_mul⁻¹ ⬝ _ ⬝ !resp_mul, exact ap pth !mul.comm end end}}, { refine EM.prop_rec _ x', esimp, apply resp_mul}, end definition EM1_mul_one (G : CommGroup) (x : EM1 G) : EM1_mul x base = x := begin induction x using EM.set_rec, { reflexivity}, { apply eq_pathover_id_right, apply hdeg_square, refine EM.elim_pth _ g} end definition h_space_EM1 [constructor] [instance] (G : CommGroup) : h_space (pEM1 G) := begin fapply h_space.mk, { exact EM1_mul}, { exact base}, { intro x', reflexivity}, { apply EM1_mul_one} end /- K(G, n+1) -/ definition EMadd1 (G : CommGroup) (n : ℕ) : Type* := ptrunc (n+1) (iterate_psusp n (pEM1 G)) definition loop_EM2 (G : CommGroup) : Ω[1] (EMadd1 G 1) ≃* pEM1 G := begin apply hopf.delooping, reflexivity end definition homotopy_group_EM2 (G : CommGroup) : πg[1+1] (EMadd1 G 1) ≃g G := begin refine ghomotopy_group_succ_in _ 0 ⬝g _, refine homotopy_group_isomorphism_of_pequiv 0 (loop_EM2 G) ⬝g _, apply fundamental_group_pEM1 end definition homotopy_group_EMadd1 (G : CommGroup) (n : ℕ) : πg[n+1] (EMadd1 G n) ≃g G := begin cases n with n, { refine homotopy_group_isomorphism_of_pequiv 0 _ ⬝g fundamental_group_pEM1 G, apply ptrunc_pequiv, apply is_trunc_pEM1}, induction n with n IH, { apply homotopy_group_EM2 G}, refine _ ⬝g IH, refine !ghomotopy_group_ptrunc ⬝g _ ⬝g !ghomotopy_group_ptrunc⁻¹ᵍ, apply iterate_psusp_stability_isomorphism, rexact add_mul_le_mul_add n 1 1 end local attribute EMadd1 [reducible] definition is_conn_EMadd1 (G : CommGroup) (n : ℕ) : is_conn n (EMadd1 G n) := _ definition is_trunc_EMadd1 (G : CommGroup) (n : ℕ) : is_trunc (n+1) (EMadd1 G n) := _ /- K(G, n+1) -/ definition EM (G : CommGroup) : ℕ → Type* | 0 := pType_of_Group G | (k+1) := EMadd1 G k definition phomotopy_group_EM (G : CommGroup) (n : ℕ) : π*[n] (EM G n) ≃* pType_of_Group G := begin cases n with n, { rexact ptrunc_pequiv 0 (pType_of_Group G) _}, { apply pequiv_of_isomorphism (homotopy_group_EMadd1 G n)} end definition ghomotopy_group_EM (G : CommGroup) (n : ℕ) : πg[n+1] (EM G (n+1)) ≃g G := homotopy_group_EMadd1 G n definition is_conn_EM [instance] (G : CommGroup) (n : ℕ) : is_conn (n.-1) (EM G n) := begin cases n with n, { apply is_conn_minus_one, apply tr, unfold [EM], exact 1}, { apply is_conn_EMadd1} end definition is_conn_EM_succ [instance] (G : CommGroup) (n : ℕ) : is_conn n (EM G (succ n)) := is_conn_EM G (succ n) definition is_trunc_EM [instance] (G : CommGroup) (n : ℕ) : is_trunc n (EM G n) := begin cases n with n, { unfold [EM], apply semigroup.is_set_carrier}, { apply is_trunc_EMadd1} end end EM