/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.category.functor Author: Floris van Doorn -/ import .basic import logic.cast logic.funext open function open category eq eq.ops heq structure functor (C D : Category) : Type := (object : C → D) (morphism : Π⦃a b : C⦄, hom a b → hom (object a) (object b)) (respect_id : Π (a : C), morphism (ID a) = ID (object a)) (respect_comp : Π ⦃a b c : C⦄ (g : hom b c) (f : hom a b), morphism (g ∘ f) = morphism g ∘ morphism f) infixl `⇒`:25 := functor namespace functor attribute object [coercion] attribute morphism [coercion] attribute respect_id [irreducible] attribute respect_comp [irreducible] variables {A B C D : Category} protected definition compose [reducible] (G : functor B C) (F : functor A B) : functor A C := functor.mk (λx, G (F x)) (λ a b f, G (F f)) (λ a, proof calc G (F (ID a)) = G id : {respect_id F a} --not giving the braces explicitly makes the elaborator compute a couple more seconds ... = id : respect_id G (F a) qed) (λ a b c g f, proof calc G (F (g ∘ f)) = G (F g ∘ F f) : respect_comp F g f ... = G (F g) ∘ G (F f) : respect_comp G (F g) (F f) qed) infixr `∘f`:60 := functor.compose protected theorem assoc (H : functor C D) (G : functor B C) (F : functor A B) : H ∘f (G ∘f F) = (H ∘f G) ∘f F := rfl protected definition id [reducible] {C : Category} : functor C C := mk (λa, a) (λ a b f, f) (λ a, rfl) (λ a b c f g, rfl) protected definition ID [reducible] (C : Category) : functor C C := @functor.id C protected theorem id_left (F : functor C D) : (@functor.id D) ∘f F = F := functor.rec (λ obF homF idF compF, dcongr_arg4 mk rfl rfl !proof_irrel !proof_irrel) F protected theorem id_right (F : functor C D) : F ∘f (@functor.id C) = F := functor.rec (λ obF homF idF compF, dcongr_arg4 mk rfl rfl !proof_irrel !proof_irrel) F end functor namespace category open functor definition category_of_categories [reducible] : category Category := mk (λ a b, functor a b) (λ a b c g f, functor.compose g f) (λ a, functor.id) (λ a b c d h g f, !functor.assoc) (λ a b f, !functor.id_left) (λ a b f, !functor.id_right) definition Category_of_categories [reducible] := Mk category_of_categories namespace ops notation `Cat`:max := Category_of_categories attribute category_of_categories [instance] end ops end category namespace functor variables {C D : Category} theorem mk_heq {obF obG : C → D} {homF homG idF idG compF compG} (Hob : ∀x, obF x = obG x) (Hmor : ∀(a b : C) (f : a ⟶ b), homF a b f == homG a b f) : mk obF homF idF compF = mk obG homG idG compG := hddcongr_arg4 mk (funext Hob) (hfunext (λ a, hfunext (λ b, hfunext (λ f, !Hmor)))) !proof_irrel !proof_irrel protected theorem hequal {F G : C ⇒ D} : Π (Hob : ∀x, F x = G x) (Hmor : ∀a b (f : a ⟶ b), F f == G f), F = G := functor.rec (λ obF homF idF compF, functor.rec (λ obG homG idG compG Hob Hmor, mk_heq Hob Hmor) G) F -- theorem mk_eq {obF obG : C → D} {homF homG idF idG compF compG} (Hob : ∀x, obF x = obG x) -- (Hmor : ∀(a b : C) (f : a ⟶ b), cast (congr_arg (λ x, x a ⟶ x b) (funext Hob)) (homF a b f) -- = homG a b f) -- : mk obF homF idF compF = mk obG homG idG compG := -- dcongr_arg4 mk -- (funext Hob) -- (funext (λ a, funext (λ b, funext (λ f, sorry ⬝ Hmor a b f)))) -- -- to fill this sorry use (a generalization of) cast_pull -- !proof_irrel -- !proof_irrel -- protected theorem equal {F G : C ⇒ D} : Π (Hob : ∀x, F x = G x) -- (Hmor : ∀a b (f : a ⟶ b), cast (congr_arg (λ x, x a ⟶ x b) (funext Hob)) (F f) = G f), F = G := -- functor.rec -- (λ obF homF idF compF, -- functor.rec -- (λ obG homG idG compG Hob Hmor, mk_eq Hob Hmor) -- G) -- F end functor