/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.set Author: Jeremy Avigad, Leonardo de Moura -/ import data.bool open eq.ops bool namespace set definition set (T : Type) := T → bool definition mem [reducible] {T : Type} (x : T) (s : set T) := (s x) = tt notation e ∈ s := mem e s definition eqv {T : Type} (A B : set T) : Prop := ∀x, x ∈ A ↔ x ∈ B notation a ∼ b := eqv a b theorem eqv_refl {T : Type} (A : set T) : A ∼ A := take x, iff.rfl theorem eqv_symm {T : Type} {A B : set T} (H : A ∼ B) : B ∼ A := take x, iff.symm (H x) theorem eqv_trans {T : Type} {A B C : set T} (H1 : A ∼ B) (H2 : B ∼ C) : A ∼ C := take x, iff.trans (H1 x) (H2 x) definition empty [reducible] {T : Type} : set T := λx, ff notation `∅` := empty theorem mem_empty {T : Type} (x : T) : ¬ (x ∈ ∅) := assume H : x ∈ ∅, absurd H ff_ne_tt definition univ {T : Type} : set T := λx, tt theorem mem_univ {T : Type} (x : T) : x ∈ univ := rfl definition inter [reducible] {T : Type} (A B : set T) : set T := λx, A x && B x notation a ∩ b := inter a b theorem mem_inter {T : Type} (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) := iff.intro (assume H, and.intro (band.eq_tt_elim_left H) (band.eq_tt_elim_right H)) (assume H, have e1 : A x = tt, from and.elim_left H, have e2 : B x = tt, from and.elim_right H, show A x && B x = tt, from e1⁻¹ ▸ e2⁻¹ ▸ band.tt_left tt) theorem inter_id {T : Type} (A : set T) : A ∩ A ∼ A := take x, band.id (A x) ▸ iff.rfl theorem inter_empty_right {T : Type} (A : set T) : A ∩ ∅ ∼ ∅ := take x, band.ff_right (A x) ▸ iff.rfl theorem inter_empty_left {T : Type} (A : set T) : ∅ ∩ A ∼ ∅ := take x, band.ff_left (A x) ▸ iff.rfl theorem inter_comm {T : Type} (A B : set T) : A ∩ B ∼ B ∩ A := take x, band.comm (A x) (B x) ▸ iff.rfl theorem inter_assoc {T : Type} (A B C : set T) : (A ∩ B) ∩ C ∼ A ∩ (B ∩ C) := take x, band.assoc (A x) (B x) (C x) ▸ iff.rfl definition union [reducible] {T : Type} (A B : set T) : set T := λx, A x || B x notation a ∪ b := union a b theorem mem_union {T : Type} (x : T) (A B : set T) : x ∈ A ∪ B ↔ (x ∈ A ∨ x ∈ B) := iff.intro (assume H, bor.to_or H) (assume H, or.elim H (assume Ha : A x = tt, show A x || B x = tt, from Ha⁻¹ ▸ bor.tt_left (B x)) (assume Hb : B x = tt, show A x || B x = tt, from Hb⁻¹ ▸ bor.tt_right (A x))) theorem union_id {T : Type} (A : set T) : A ∪ A ∼ A := take x, bor.id (A x) ▸ iff.rfl theorem union_empty_right {T : Type} (A : set T) : A ∪ ∅ ∼ A := take x, bor.ff_right (A x) ▸ iff.rfl theorem union_empty_left {T : Type} (A : set T) : ∅ ∪ A ∼ A := take x, bor.ff_left (A x) ▸ iff.rfl theorem union_comm {T : Type} (A B : set T) : A ∪ B ∼ B ∪ A := take x, bor.comm (A x) (B x) ▸ iff.rfl theorem union_assoc {T : Type} (A B C : set T) : (A ∪ B) ∪ C ∼ A ∪ (B ∪ C) := take x, bor.assoc (A x) (B x) (C x) ▸ iff.rfl end set