/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura Factorial -/ import data.nat.div namespace nat definition fact : nat → nat | 0 := 1 | (succ n) := (succ n) * fact n lemma fact_zero : fact 0 = 1 := rfl lemma fact_one : fact 1 = 1 := rfl lemma fact_succ (n) : fact (succ n) = succ n * fact n := rfl lemma fact_ne_zero : ∀ n, fact n ≠ 0 | 0 := by contradiction | (succ n) := begin intro h, rewrite [fact_succ at h], cases (eq_zero_or_eq_zero_of_mul_eq_zero h) with h₁ h₂, contradiction, exact fact_ne_zero n h₂ end lemma fact_gt_0 (n) : fact n > 0 := pos_of_ne_zero (fact_ne_zero n) lemma dvd_fact : ∀ {m n}, m > 0 → m ≤ n → m ∣ fact n | m 0 h₁ h₂ := absurd h₁ (not_lt_of_ge h₂) | m (succ n) h₁ h₂ := begin rewrite fact_succ, cases (eq_or_lt_of_le h₂) with he hl, {subst m, apply dvd_mul_right}, {have aux : m ∣ fact n, from dvd_fact h₁ (le_of_lt_succ hl), apply dvd_mul_of_dvd_right aux} end lemma fact_le {m n} : m ≤ n → fact m ≤ fact n := begin induction n with n ih, {intro h, have meq0 : m = 0, from eq_zero_of_le_zero h, subst m}, {intro m_le_succ_n, cases (eq_or_lt_of_le m_le_succ_n) with h₁ h₂, {subst m}, {transitivity (fact n), exact ih (le_of_lt_succ h₂), rewrite [fact_succ, -one_mul at {1}], exact mul_le_mul (succ_le_succ (zero_le n)) !le.refl}} end end nat