/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad Finite products on a monoid, and finite sums on an additive monoid. We have to be careful with dependencies. This theory imports files from finset and list, which import basic files from nat. Then nat imports this file to instantiate finite products and sums. -/ import .group data.list.basic data.list.perm data.finset.basic open algebra function binary quot subtype list finset namespace algebra variables {A B : Type} variable [deceqA : decidable_eq A] /- Prodl: product indexed by a list -/ section monoid variable [mB : monoid B] include mB definition mulf (f : A → B) : B → A → B := λ b a, b * f a definition Prodl (l : list A) (f : A → B) : B := list.foldl (mulf f) 1 l -- ∏ x ← l, f x notation `∏` binders `←` l, r:(scoped f, Prodl l f) := r private theorem foldl_const (f : A → B) : ∀ (l : list A) (b : B), foldl (mulf f) b l = b * foldl (mulf f) 1 l | [] b := by rewrite [*foldl_nil, mul_one] | (a::l) b := by rewrite [*foldl_cons, foldl_const, {foldl _ (mulf f 1 a) _}foldl_const, ↑mulf, one_mul, mul.assoc] theorem Prodl_nil (f : A → B) : Prodl [] f = 1 := rfl theorem Prodl_cons (f : A → B) (a : A) (l : list A) : Prodl (a::l) f = f a * Prodl l f := by rewrite [↑Prodl, foldl_cons, foldl_const, ↑mulf, one_mul] theorem Prodl_append : ∀ (l₁ l₂ : list A) (f : A → B), Prodl (l₁++l₂) f = Prodl l₁ f * Prodl l₂ f | [] l₂ f := by rewrite [append_nil_left, Prodl_nil, one_mul] | (a::l) l₂ f := by rewrite [append_cons, *Prodl_cons, Prodl_append, mul.assoc] section deceqA include deceqA theorem Prodl_insert_of_mem (f : A → B) {a : A} {l : list A} : a ∈ l → Prodl (insert a l) f = Prodl l f := assume ainl, by rewrite [insert_eq_of_mem ainl] theorem Prodl_insert_of_not_mem (f : A → B) {a : A} {l : list A} : a ∉ l → Prodl (insert a l) f = f a * Prodl l f := assume nainl, by rewrite [insert_eq_of_not_mem nainl, Prodl_cons] theorem Prodl_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) : Prodl (union l₁ l₂) f = Prodl l₁ f * Prodl l₂ f := by rewrite [union_eq_append d, Prodl_append] end deceqA theorem Prodl_one : ∀(l : list A), Prodl l (λ x, 1) = (1:B) | [] := rfl | (a::l) := by rewrite [Prodl_cons, Prodl_one, mul_one] end monoid section comm_monoid variable [cmB : comm_monoid B] include cmB theorem Prodl_mul (l : list A) (f g : A → B) : Prodl l (λx, f x * g x) = Prodl l f * Prodl l g := list.induction_on l (by rewrite [*Prodl_nil, mul_one]) (take a l, assume IH, by rewrite [*Prodl_cons, IH, *mul.assoc, mul.left_comm (Prodl l f)]) end comm_monoid /- Prod: product indexed by a finset -/ section comm_monoid variable [cmB : comm_monoid B] include cmB theorem mulf_rcomm (f : A → B) : right_commutative (mulf f) := right_commutative_compose_right (@has_mul.mul B cmB) f (@mul.right_comm B cmB) theorem Prodl_eq_Prodl_of_perm (f : A → B) {l₁ l₂ : list A} : perm l₁ l₂ → Prodl l₁ f = Prodl l₂ f := λ p, perm.foldl_eq_of_perm (mulf_rcomm f) p 1 definition Prod (s : finset A) (f : A → B) : B := quot.lift_on s (λ l, Prodl (elt_of l) f) (λ l₁ l₂ p, Prodl_eq_Prodl_of_perm f p) -- ∏ x ∈ s, f x notation `∏` binders `∈` s, r:(scoped f, prod s f) := r theorem Prod_empty (f : A → B) : Prod ∅ f = 1 := Prodl_nil f theorem Prod_mul (s : finset A) (f g : A → B) : Prod s (λx, f x * g x) = Prod s f * Prod s g := quot.induction_on s (take u, !Prodl_mul) section deceqA include deceqA theorem Prod_insert_of_mem (f : A → B) {a : A} {s : finset A} : a ∈ s → Prod (insert a s) f = Prod s f := quot.induction_on s (λ l ainl, Prodl_insert_of_mem f ainl) theorem Prod_insert_of_not_mem (f : A → B) {a : A} {s : finset A} : a ∉ s → Prod (insert a s) f = f a * Prod s f := quot.induction_on s (λ l nainl, Prodl_insert_of_not_mem f nainl) theorem Prod_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) : Prod (s₁ ∪ s₂) f = Prod s₁ f * Prod s₂ f := have H1 : disjoint s₁ s₂ → Prod (s₁ ∪ s₂) f = Prod s₁ f * Prod s₂ f, from quot.induction_on₂ s₁ s₂ (λ l₁ l₂ d, Prodl_union f d), H1 (disjoint_of_inter_eq_empty disj) theorem Prod_ext {s : finset A} {f g : A → B} : (∀{x}, x ∈ s → f x = g x) → Prod s f = Prod s g := finset.induction_on s (assume H, rfl) (take x s', assume H1 : x ∉ s', assume IH : (∀ {x : A}, x ∈ s' → f x = g x) → Prod s' f = Prod s' g, assume H2 : ∀{y}, y ∈ insert x s' → f y = g y, assert H3 : ∀y, y ∈ s' → f y = g y, from take y, assume H', H2 (mem_insert_of_mem _ H'), assert H4 : f x = g x, from H2 !mem_insert, by rewrite [Prod_insert_of_not_mem f H1, Prod_insert_of_not_mem g H1, IH H3, H4]) end deceqA theorem Prod_one (s : finset A) : Prod s (λ x, 1) = (1:B) := quot.induction_on s (take u, !Prodl_one) end comm_monoid section add_monoid variable [amB : add_monoid B] include amB local attribute add_monoid.to_monoid [trans-instance] definition Suml (l : list A) (f : A → B) : B := Prodl l f -- ∑ x ← l, f x notation `∑` binders `←` l, r:(scoped f, Suml l f) := r theorem Suml_nil (f : A → B) : Suml [] f = 0 := Prodl_nil f theorem Suml_cons (f : A → B) (a : A) (l : list A) : Suml (a::l) f = f a + Suml l f := Prodl_cons f a l theorem Suml_append (l₁ l₂ : list A) (f : A → B) : Suml (l₁++l₂) f = Suml l₁ f + Suml l₂ f := Prodl_append l₁ l₂ f section deceqA include deceqA theorem Suml_insert_of_mem (f : A → B) {a : A} {l : list A} (H : a ∈ l) : Suml (insert a l) f = Suml l f := Prodl_insert_of_mem f H theorem Suml_insert_of_not_mem (f : A → B) {a : A} {l : list A} (H : a ∉ l) : Suml (insert a l) f = f a + Suml l f := Prodl_insert_of_not_mem f H theorem Suml_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) : Suml (union l₁ l₂) f = Suml l₁ f + Suml l₂ f := Prodl_union f d end deceqA theorem Suml_zero (l : list A) : Suml l (λ x, 0) = (0:B) := Prodl_one l end add_monoid section add_comm_monoid variable [acmB : add_comm_monoid B] include acmB local attribute add_comm_monoid.to_comm_monoid [trans-instance] theorem Suml_add (l : list A) (f g : A → B) : Suml l (λx, f x + g x) = Suml l f + Suml l g := Prodl_mul l f g end add_comm_monoid /- Sum -/ section add_comm_monoid variable [acmB : add_comm_monoid B] include acmB local attribute add_comm_monoid.to_comm_monoid [trans-instance] definition Sum (s : finset A) (f : A → B) : B := Prod s f -- ∑ x ∈ s, f x notation `∑` binders `∈` s, r:(scoped f, Sum s f) := r theorem Sum_empty (f : A → B) : Sum ∅ f = 0 := Prod_empty f theorem Sum_add (s : finset A) (f g : A → B) : Sum s (λx, f x + g x) = Sum s f + Sum s g := Prod_mul s f g section deceqA include deceqA theorem Sum_insert_of_mem (f : A → B) {a : A} {s : finset A} (H : a ∈ s) : Sum (insert a s) f = Sum s f := Prod_insert_of_mem f H theorem Sum_insert_of_not_mem (f : A → B) {a : A} {s : finset A} (H : a ∉ s) : Sum (insert a s) f = f a + Sum s f := Prod_insert_of_not_mem f H theorem Sum_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) : Sum (s₁ ∪ s₂) f = Sum s₁ f + Sum s₂ f := Prod_union f disj theorem Sum_ext {s : finset A} {f g : A → B} (H : ∀x, x ∈ s → f x = g x) : Sum s f = Sum s g := Prod_ext H end deceqA theorem Sum_zero (s : finset A) : Sum s (λ x, 0) = (0:B) := Prod_one s end add_comm_monoid end algebra