-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jeremy Avigad -- algebra.relation -- ============== import logic.prop -- General properties of relations -- ------------------------------- namespace relation definition reflexive {T : Type} (R : T → T → Type) : Type := ∀x, R x x definition symmetric {T : Type} (R : T → T → Type) : Type := ∀⦃x y⦄, R x y → R y x definition transitive {T : Type} (R : T → T → Type) : Type := ∀⦃x y z⦄, R x y → R y z → R x z inductive is_reflexive [class] {T : Type} (R : T → T → Type) : Prop := mk : reflexive R → is_reflexive R namespace is_reflexive definition app ⦃T : Type⦄ {R : T → T → Type} (C : is_reflexive R) : reflexive R := is_reflexive.rec (λu, u) C definition infer ⦃T : Type⦄ (R : T → T → Type) {C : is_reflexive R} : reflexive R := is_reflexive.rec (λu, u) C end is_reflexive inductive is_symmetric [class] {T : Type} (R : T → T → Type) : Prop := mk : symmetric R → is_symmetric R namespace is_symmetric definition app ⦃T : Type⦄ {R : T → T → Type} (C : is_symmetric R) : symmetric R := is_symmetric.rec (λu, u) C definition infer ⦃T : Type⦄ (R : T → T → Type) {C : is_symmetric R} : symmetric R := is_symmetric.rec (λu, u) C end is_symmetric inductive is_transitive [class] {T : Type} (R : T → T → Type) : Prop := mk : transitive R → is_transitive R namespace is_transitive definition app ⦃T : Type⦄ {R : T → T → Type} (C : is_transitive R) : transitive R := is_transitive.rec (λu, u) C definition infer ⦃T : Type⦄ (R : T → T → Type) {C : is_transitive R} : transitive R := is_transitive.rec (λu, u) C end is_transitive inductive is_equivalence [class] {T : Type} (R : T → T → Type) : Prop := mk : is_reflexive R → is_symmetric R → is_transitive R → is_equivalence R theorem is_equivalence.is_reflexive [instance] {T : Type} (R : T → T → Type) {C : is_equivalence R} : is_reflexive R := is_equivalence.rec (λx y z, x) C theorem is_equivalence.is_symmetric [instance] {T : Type} {R : T → T → Type} {C : is_equivalence R} : is_symmetric R := is_equivalence.rec (λx y z, y) C theorem is_equivalence.is_transitive [instance] {T : Type} {R : T → T → Type} {C : is_equivalence R} : is_transitive R := is_equivalence.rec (λx y z, z) C -- partial equivalence relation inductive is_PER {T : Type} (R : T → T → Type) : Prop := mk : is_symmetric R → is_transitive R → is_PER R theorem is_PER.is_symmetric [instance] {T : Type} {R : T → T → Type} {C : is_PER R} : is_symmetric R := is_PER.rec (λx y, x) C theorem is_PER.is_transitive [instance] {T : Type} {R : T → T → Type} {C : is_PER R} : is_transitive R := is_PER.rec (λx y, y) C -- Congruence for unary and binary functions -- ----------------------------------------- inductive congruence [class] {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) (f : T1 → T2) : Prop := mk : (∀x y, R1 x y → R2 (f x) (f y)) → congruence R1 R2 f -- for binary functions inductive congruence2 [class] {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) {T3 : Type} (R3 : T3 → T3 → Prop) (f : T1 → T2 → T3) : Prop := mk : (∀(x1 y1 : T1) (x2 y2 : T2), R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2)) → congruence2 R1 R2 R3 f namespace congruence definition app {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop} {f : T1 → T2} (C : congruence R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) := rec (λu, u) C x y theorem infer {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) (f : T1 → T2) {C : congruence R1 R2 f} ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) := rec (λu, u) C x y definition app2 {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop} {T3 : Type} {R3 : T3 → T3 → Prop} {f : T1 → T2 → T3} (C : congruence2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄ : R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) := congruence2.rec (λu, u) C x1 y1 x2 y2 -- ### general tools to build instances theorem compose {T2 : Type} {R2 : T2 → T2 → Prop} {T3 : Type} {R3 : T3 → T3 → Prop} {g : T2 → T3} (C2 : congruence R2 R3 g) ⦃T1 : Type⦄ {R1 : T1 → T1 → Prop} {f : T1 → T2} (C1 : congruence R1 R2 f) : congruence R1 R3 (λx, g (f x)) := mk (λx1 x2 H, app C2 (app C1 H)) theorem compose21 {T2 : Type} {R2 : T2 → T2 → Prop} {T3 : Type} {R3 : T3 → T3 → Prop} {T4 : Type} {R4 : T4 → T4 → Prop} {g : T2 → T3 → T4} (C3 : congruence2 R2 R3 R4 g) ⦃T1 : Type⦄ {R1 : T1 → T1 → Prop} {f1 : T1 → T2} (C1 : congruence R1 R2 f1) {f2 : T1 → T3} (C2 : congruence R1 R3 f2) : congruence R1 R4 (λx, g (f1 x) (f2 x)) := mk (λx1 x2 H, app2 C3 (app C1 H) (app C2 H)) theorem const {T2 : Type} (R2 : T2 → T2 → Prop) (H : relation.reflexive R2) ⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) : congruence R1 R2 (λu : T1, c) := mk (λx y H1, H c) end congruence -- Notice these can't be in the congruence namespace, if we want it visible without -- using congruence. theorem congruence_const [instance] {T2 : Type} (R2 : T2 → T2 → Prop) {C : is_reflexive R2} ⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) : congruence R1 R2 (λu : T1, c) := congruence.const R2 (is_reflexive.app C) R1 c theorem congruence_trivial [instance] {T : Type} (R : T → T → Prop) : congruence R R (λu, u) := congruence.mk (λx y H, H) -- Relations that can be coerced to functions / implications -- --------------------------------------------------------- inductive mp_like [class] {R : Type → Type → Prop} {a b : Type} (H : R a b) : Type := mk {} : (a → b) → @mp_like R a b H namespace mp_like definition app.{l} {R : Type → Type → Prop} {a : Type} {b : Type} {H : R a b} (C : mp_like H) : a → b := rec (λx, x) C definition infer ⦃R : Type → Type → Prop⦄ {a : Type} {b : Type} (H : R a b) {C : mp_like H} : a → b := rec (λx, x) C end mp_like -- Notation for operations on general symbols -- ------------------------------------------ -- e.g. if R is an instance of the class, then "refl R" is reflexivity for the class definition rel_refl := is_reflexive.infer definition rel_symm := is_symmetric.infer definition rel_trans := is_transitive.infer definition rel_mp := mp_like.infer end relation