--- Copyright (c) 2014 Microsoft Corporation. All rights reserved. --- Released under Apache 2.0 license as described in the file LICENSE. --- Author: Jeremy Avigad import ..instances open relation open relation.general_operations open relation.iff_ops open eq_ops section theorem test1 (a b : Prop) (H : a ↔ b) (H1 : a) : b := mp H H1 end section theorem test2 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a ∨ c → ¬(d → a)) : b ∨ c → ¬(d → b) := subst iff H1 H2 theorem test3 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a ∨ c → ¬(d → a)) : b ∨ c → ¬(d → b) := H1 ▸ H2 end theorem test4 (a b c d e : Prop) (H1 : a ↔ b) : (a ∨ c → ¬(d → a)) ↔ (b ∨ c → ¬(d → b)) := congruence.infer iff iff (λa, (a ∨ c → ¬(d → a))) H1 section theorem test5 (T : Type) (a b c d : T) (H1 : a = b) (H2 : c = b) (H3 : c = d) : a = d := H1 ⬝ H2⁻¹ ⬝ H3 theorem test6 (a b c d : Prop) (H1 : a ↔ b) (H2 : c ↔ b) (H3 : c ↔ d) : a ↔ d := H1 ⬝ (H2⁻¹ ⬝ H3) theorem test7 (T : Type) (a b c d : T) (H1 : a = b) (H2 : c = b) (H3 : c = d) : a = d := trans H1 (trans (symm H2) H3) theorem test8 (a b c d : Prop) (H1 : a ↔ b) (H2 : c ↔ b) (H3 : c ↔ d) : a ↔ d := trans H1 (trans (symm H2) H3) end