/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: types.equiv Author: Floris van Doorn Ported from Coq HoTT Theorems about the types equiv and is_equiv -/ import .fiber .arrow arity .hprop_trunc open eq is_trunc sigma sigma.ops arrow pi fiber function equiv namespace is_equiv variables {A B : Type} (f : A → B) [H : is_equiv f] include H /- is_equiv f is a mere proposition -/ definition is_contr_fiber_of_is_equiv [instance] (b : B) : is_contr (fiber f b) := is_contr.mk (fiber.mk (f⁻¹ b) (right_inv f b)) (λz, fiber.rec_on z (λa p, fiber_eq ((ap f⁻¹ p)⁻¹ ⬝ left_inv f a) (calc right_inv f b = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ((ap (f ∘ f⁻¹) p) ⬝ right_inv f b) : by rewrite inv_con_cancel_left ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (right_inv f (f a) ⬝ p) : by rewrite ap_con_eq_con ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (ap f (left_inv f a) ⬝ p) : by rewrite adj ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite con.assoc ... = (ap f (ap f⁻¹ p))⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_compose ... = ap f (ap f⁻¹ p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_inv ... = ap f ((ap f⁻¹ p)⁻¹ ⬝ left_inv f a) ⬝ p : by rewrite ap_con))) definition is_contr_right_inverse : is_contr (Σ(g : B → A), f ∘ g ∼ id) := begin fapply is_trunc_equiv_closed, {apply sigma_equiv_sigma_id, intro g, apply eq_equiv_homotopy}, fapply is_trunc_equiv_closed, {apply fiber.sigma_char}, fapply is_contr_fiber_of_is_equiv, apply (to_is_equiv (arrow_equiv_arrow_right (equiv.mk f H))), end definition is_contr_right_coherence (u : Σ(g : B → A), f ∘ g ∼ id) : is_contr (Σ(η : u.1 ∘ f ∼ id), Π(a : A), u.2 (f a) = ap f (η a)) := begin fapply is_trunc_equiv_closed, {apply equiv.symm, apply sigma_pi_equiv_pi_sigma}, fapply is_trunc_equiv_closed, {apply pi_equiv_pi_id, intro a, apply (fiber_eq_equiv (fiber.mk (u.1 (f a)) (u.2 (f a))) (fiber.mk a idp))}, end omit H protected definition sigma_char : (is_equiv f) ≃ (Σ(g : B → A) (ε : f ∘ g ∼ id) (η : g ∘ f ∼ id), Π(a : A), ε (f a) = ap f (η a)) := equiv.MK (λH, ⟨inv f, right_inv f, left_inv f, adj f⟩) (λp, is_equiv.mk f p.1 p.2.1 p.2.2.1 p.2.2.2) (λp, begin cases p with p1 p2, cases p2 with p21 p22, cases p22 with p221 p222, apply idp end) (λH, is_equiv.rec_on H (λH1 H2 H3 H4, idp)) protected definition sigma_char' : (is_equiv f) ≃ (Σ(u : Σ(g : B → A), f ∘ g ∼ id), Σ(η : u.1 ∘ f ∼ id), Π(a : A), u.2 (f a) = ap f (η a)) := calc (is_equiv f) ≃ (Σ(g : B → A) (ε : f ∘ g ∼ id) (η : g ∘ f ∼ id), Π(a : A), ε (f a) = ap f (η a)) : is_equiv.sigma_char ... ≃ (Σ(u : Σ(g : B → A), f ∘ g ∼ id), Σ(η : u.1 ∘ f ∼ id), Π(a : A), u.2 (f a) = ap f (η a)) : {sigma_assoc_equiv (λu, Σ(η : u.1 ∘ f ∼ id), Π(a : A), u.2 (f a) = ap f (η a))} local attribute is_contr_right_inverse [instance] [priority 1600] local attribute is_contr_right_coherence [instance] [priority 1600] theorem is_hprop_is_equiv [instance] : is_hprop (is_equiv f) := is_hprop_of_imp_is_contr (λ(H : is_equiv f), is_trunc_equiv_closed -2 (equiv.symm !sigma_char')) /- contractible fibers -/ definition is_contr_fun [reducible] (f : A → B) := Π(b : B), is_contr (fiber f b) definition is_contr_fun_of_is_equiv [H : is_equiv f] : is_contr_fun f := is_contr_fiber_of_is_equiv f definition is_hprop_is_contr_fun (f : A → B) : is_hprop (is_contr_fun f) := _ /- we cannot make the next theorem an instance, because it loops together with is_contr_fiber_of_is_equiv -/ definition is_equiv_of_is_contr_fun [H : is_contr_fun f] : is_equiv f := adjointify _ (λb, point (center (fiber f b))) (λb, point_eq (center (fiber f b))) (λa, ap point (center_eq (fiber.mk a idp))) definition is_equiv_of_imp_is_equiv (H : B → is_equiv f) : is_equiv f := @is_equiv_of_is_contr_fun _ _ f (λb, @is_contr_fiber_of_is_equiv _ _ _ (H b) _) definition is_equiv_equiv_is_contr_fun : is_equiv f ≃ is_contr_fun f := equiv_of_is_hprop _ (λH, !is_equiv_of_is_contr_fun) end is_equiv namespace equiv open is_equiv variables {A B : Type} definition equiv_mk_eq {f f' : A → B} [H : is_equiv f] [H' : is_equiv f'] (p : f = f') : equiv.mk f H = equiv.mk f' H' := apd011 equiv.mk p !is_hprop.elim definition equiv_eq {f f' : A ≃ B} (p : to_fun f = to_fun f') : f = f' := by (cases f; cases f'; apply (equiv_mk_eq p)) protected definition equiv.sigma_char (A B : Type) : (A ≃ B) ≃ Σ(f : A → B), is_equiv f := begin fapply equiv.MK, {intro F, exact ⟨to_fun F, to_is_equiv F⟩}, {intro p, cases p with f H, exact (equiv.mk f H)}, {intro p, cases p, exact idp}, {intro F, cases F, exact idp}, end definition equiv_eq_char (f f' : A ≃ B) : (f = f') ≃ (to_fun f = to_fun f') := calc (f = f') ≃ (to_fun !equiv.sigma_char f = to_fun !equiv.sigma_char f') : eq_equiv_fn_eq (to_fun !equiv.sigma_char) ... ≃ ((to_fun !equiv.sigma_char f).1 = (to_fun !equiv.sigma_char f').1 ) : equiv_subtype ... ≃ (to_fun f = to_fun f') : equiv.refl definition is_equiv_ap_to_fun (f f' : A ≃ B) : is_equiv (ap to_fun : f = f' → to_fun f = to_fun f') := begin fapply adjointify, {intro p, cases f with f H, cases f' with f' H', cases p, apply ap (mk f'), apply is_hprop.elim}, {intro p, cases f with f H, cases f' with f' H', cases p, apply @concat _ _ (ap to_fun (ap (equiv.mk f') (is_hprop.elim H H'))), {apply idp}, generalize is_hprop.elim H H', intro q, cases q, apply idp}, {intro p, cases p, cases f with f H, apply ap (ap (equiv.mk f)), apply is_hset.elim} end end equiv