/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.category.natural_transformation Author: Floris van Doorn -/ import .functor open category eq eq.ops functor inductive natural_transformation {C D : Category} (F G : C ⇒ D) : Type := mk : Π (η : Π(a : C), hom (F a) (G a)), (Π{a b : C} (f : hom a b), G f ∘ η a = η b ∘ F f) → natural_transformation F G infixl `⟹`:25 := natural_transformation -- \==> namespace natural_transformation variables {C D : Category} {F G H I : functor C D} definition natural_map [coercion] (η : F ⟹ G) : Π(a : C), F a ⟶ G a := rec (λ x y, x) η theorem naturality (η : F ⟹ G) : Π⦃a b : C⦄ (f : a ⟶ b), G f ∘ η a = η b ∘ F f := rec (λ x y, y) η protected definition compose (η : G ⟹ H) (θ : F ⟹ G) : F ⟹ H := natural_transformation.mk (λ a, η a ∘ θ a) (λ a b f, calc H f ∘ (η a ∘ θ a) = (H f ∘ η a) ∘ θ a : assoc ... = (η b ∘ G f) ∘ θ a : naturality η f ... = η b ∘ (G f ∘ θ a) : assoc ... = η b ∘ (θ b ∘ F f) : naturality θ f ... = (η b ∘ θ b) ∘ F f : assoc) --congr_arg (λx, η b ∘ x) (naturality θ f) -- this needed to be explicit for some reason (on Oct 24) infixr `∘n`:60 := compose protected theorem assoc (η₃ : H ⟹ I) (η₂ : G ⟹ H) (η₁ : F ⟹ G) : η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ := dcongr_arg2 mk (funext (take x, !assoc)) !proof_irrel protected definition id {C D : Category} {F : functor C D} : natural_transformation F F := mk (λa, id) (λa b f, !id_right ⬝ symm !id_left) protected definition ID {C D : Category} (F : functor C D) : natural_transformation F F := id protected theorem id_left (η : F ⟹ G) : natural_transformation.compose id η = η := rec (λf H, dcongr_arg2 mk (funext (take x, !id_left)) !proof_irrel) η protected theorem id_right (η : F ⟹ G) : natural_transformation.compose η id = η := rec (λf H, dcongr_arg2 mk (funext (take x, !id_right)) !proof_irrel) η end natural_transformation