/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Theorems about algebra specific to HoTT -/ import .group arity types.pi prop_trunc types.unit .bundled open equiv eq equiv.ops is_trunc unit namespace algebra definition trivial_group [constructor] : group unit := group.mk (λx y, star) _ (λx y z, idp) star (unit.rec idp) (unit.rec idp) (λx, star) (λx, idp) definition Trivial_group [constructor] : Group := Group.mk _ trivial_group notation `G0` := Trivial_group open Group has_mul has_inv -- we prove under which conditions two groups are equal -- group and has_mul are classes. So, lean does not automatically generate -- coercions between them anymore. -- So, an application such as (@mul A G g h) in the following definition -- is type incorrect if the coercion is not added (explicitly or implicitly). definition group.to_has_mul [coercion] {A : Type} (H : group A) : has_mul A := _ local attribute group.to_has_inv [coercion] universe variable l variables {A B : Type.{l}} definition group_eq {G H : group A} (same_mul' : Π(g h : A), @mul A G g h = @mul A H g h) : G = H := begin have foo : Π(g : A), @inv A G g = (@inv A G g * g) * @inv A H g, from λg, !mul_inv_cancel_right⁻¹, cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4, cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4, rewrite [↑[semigroup.to_has_mul,group.to_has_inv] at (same_mul,foo)], have same_mul : Gm = Hm, from eq_of_homotopy2 same_mul', cases same_mul, have same_one : G1 = H1, from calc G1 = Hm G1 H1 : Hh3 ... = H1 : Gh2, have same_inv : Gi = Hi, from eq_of_homotopy (take g, calc Gi g = Hm (Hm (Gi g) g) (Hi g) : foo ... = Hm G1 (Hi g) : by rewrite Gh4 ... = Hi g : Gh2), cases same_one, cases same_inv, have ps : Gs = Hs, from !is_prop.elim, have ph1 : Gh1 = Hh1, from !is_prop.elim, have ph2 : Gh2 = Hh2, from !is_prop.elim, have ph3 : Gh3 = Hh3, from !is_prop.elim, have ph4 : Gh4 = Hh4, from !is_prop.elim, cases ps, cases ph1, cases ph2, cases ph3, cases ph4, reflexivity end definition group_pathover {G : group A} {H : group B} {f : A ≃ B} : (Π(g h : A), f (g * h) = f g * f h) → G =[ua f] H := begin revert H, eapply (rec_on_ua_idp' f), intros H resp_mul, esimp [equiv.refl] at resp_mul, esimp, apply pathover_idp_of_eq, apply group_eq, exact resp_mul end definition Group_eq {G H : Group} (f : carrier G ≃ carrier H) (resp_mul : Π(g h : G), f (g * h) = f g * f h) : G = H := begin cases G with Gc G, cases H with Hc H, apply (apo011 mk (ua f)), apply group_pathover, exact resp_mul end definition trivial_group_of_is_contr (G : Group) [H : is_contr G] : G = G0 := begin fapply Group_eq, { apply equiv_unit_of_is_contr}, { intros, reflexivity} end end algebra