import logic namespace nat constant nat : Type.{1} constant add : nat → nat → nat constant le : nat → nat → Prop constant one : nat infixl `+`:65 := add infix `≤`:50 := le axiom add_assoc (a b c : nat) : (a + b) + c = a + (b + c) axiom add_le_left {a b : nat} (H : a ≤ b) (c : nat) : c + a ≤ c + b end nat namespace int constant int : Type.{1} constant add : int → int → int constant le : int → int → Prop constant one : int infixl `+`:65 := add infix `≤`:50 := le axiom add_assoc (a b c : int) : (a + b) + c = a + (b + c) axiom add_le_left {a b : int} (H : a ≤ b) (c : int) : c + a ≤ c + b definition lt (a b : int) := a + one ≤ b infix `<`:50 := lt end int open int open nat open eq theorem add_lt_left {a b : int} (H : a < b) (c : int) : c + a < c + b := subst (symm (add_assoc c a one)) (add_le_left H c)