/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad -/ prelude import init.datatypes notation `assume` binders `,` r:(scoped f, f) := r notation `take` binders `,` r:(scoped f, f) := r /- Global declarations of right binding strength If a module reassigns these, it will be incompatible with other modules that adhere to these conventions. When hovering over a symbol, use "C-c C-k" to see how to input it. -/ definition std.prec.max : num := 1024 -- the strength of application, identifiers, (, [, etc. definition std.prec.arrow : num := 25 /- The next definition is "max + 10". It can be used e.g. for postfix operations that should be stronger than application. -/ definition std.prec.max_plus := num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ std.prec.max))))))))) /- Logical operations and relations -/ reserve prefix `¬`:40 reserve prefix `~`:40 reserve infixr ` ∧ `:35 reserve infixr ` /\ `:35 reserve infixr ` \/ `:30 reserve infixr ` ∨ `:30 reserve infix ` <-> `:20 reserve infix ` ↔ `:20 reserve infix ` = `:50 reserve infix ` ≠ `:50 reserve infix ` ≈ `:50 reserve infix ` ~ `:50 reserve infix ` ≡ `:50 reserve infixr ` ∘ `:60 -- input with \comp reserve postfix `⁻¹`:std.prec.max_plus -- input with \sy or \-1 or \inv reserve infixl ` ⬝ `:75 reserve infixr ` ▸ `:75 reserve infixr ` ▹ `:75 /- types and type constructors -/ reserve infixl ` ⊎ `:25 reserve infixl ` × `:30 /- arithmetic operations -/ reserve infixl ` + `:65 reserve infixl ` - `:65 reserve infixl ` * `:70 reserve infixl ` div `:70 reserve infixl ` mod `:70 reserve infixl ` / `:70 reserve prefix `-`:100 reserve infix ` ^ `:80 reserve infix ` <= `:50 reserve infix ` ≤ `:50 reserve infix ` < `:50 reserve infix ` >= `:50 reserve infix ` ≥ `:50 reserve infix ` > `:50 /- boolean operations -/ reserve infixl ` && `:70 reserve infixl ` || `:65 /- set operations -/ reserve infix ` ∈ `:50 reserve infix ` ∉ `:50 reserve infixl ` ∩ `:70 reserve infixl ` ∪ `:65 reserve infix ` ⊆ `:50 reserve infix ` ⊇ `:50 /- other symbols -/ reserve infix ` ∣ `:50 reserve infixl ` ++ `:65 reserve infixr ` :: `:65 structure has_add [class] (A : Type) := (add : A → A → A) structure has_mul [class] (A : Type) := (mul : A → A → A) structure has_inv [class] (A : Type) := (inv : A → A) structure has_neg [class] (A : Type) := (neg : A → A) structure has_sub [class] (A : Type) := (sub : A → A → A) structure has_division [class] (A : Type) := (division : A → A → A) structure has_divides [class] (A : Type) := (divides : A → A → A) structure has_modulo [class] (A : Type) := (modulo : A → A → A) structure has_dvd [class] (A : Type) := (dvd : A → A → Prop) structure has_le [class] (A : Type) := (le : A → A → Prop) structure has_lt [class] (A : Type) := (lt : A → A → Prop) definition add {A : Type} [s : has_add A] : A → A → A := has_add.add definition mul {A : Type} [s : has_mul A] : A → A → A := has_mul.mul definition sub {A : Type} [s : has_sub A] : A → A → A := has_sub.sub definition division {A : Type} [s : has_division A] : A → A → A := has_division.division definition divides {A : Type} [s : has_divides A] : A → A → A := has_divides.divides definition modulo {A : Type} [s : has_modulo A] : A → A → A := has_modulo.modulo definition dvd {A : Type} [s : has_dvd A] : A → A → Prop := has_dvd.dvd definition neg {A : Type} [s : has_neg A] : A → A := has_neg.neg definition inv {A : Type} [s : has_inv A] : A → A := has_inv.inv definition le {A : Type} [s : has_le A] : A → A → Prop := has_le.le definition lt {A : Type} [s : has_lt A] : A → A → Prop := has_lt.lt definition ge [reducible] {A : Type} [s : has_le A] (a b : A) : Prop := le b a definition gt [reducible] {A : Type} [s : has_lt A] (a b : A) : Prop := lt b a infix + := add infix * := mul infix - := sub infix / := division infix div := divides infix ∣ := dvd infix mod := modulo prefix - := neg postfix ⁻¹ := inv infix ≤ := le infix ≥ := ge infix < := lt infix > := gt