/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura Show that "bounded" quantifiers: (∃x, x < n ∧ P x) and (∀x, x < n → P x) are decidable when P is decidable. This module allow us to write if-then-else expressions such as if (∀ x : nat, x < n → ∃ y : nat, y < n ∧ y * y = x) then t else s without assuming classical axioms. More importantly, they can be reduced inside of the Lean kernel. -/ import data.nat.order namespace nat definition bex [reducible] (n : nat) (P : nat → Prop) : Prop := ∃ x, x < n ∧ P x definition ball [reducible] (n : nat) (P : nat → Prop) : Prop := ∀ x, x < n → P x definition not_bex_zero (P : nat → Prop) : ¬ bex 0 P := λ H, obtain (w : nat) (Hw : w < 0 ∧ P w), from H, and.rec_on Hw (λ h₁ h₂, absurd h₁ (not_lt_zero w)) definition bex_succ {P : nat → Prop} {n : nat} (H : bex n P) : bex (succ n) P := obtain (w : nat) (Hw : w < n ∧ P w), from H, and.rec_on Hw (λ hlt hp, exists.intro w (and.intro (lt.step hlt) hp)) definition bex_succ_of_pred {P : nat → Prop} {a : nat} (H : P a) : bex (succ a) P := exists.intro a (and.intro (lt.base a) H) definition not_bex_succ {P : nat → Prop} {n : nat} (H₁ : ¬ bex n P) (H₂ : ¬ P n) : ¬ bex (succ n) P := λ H, obtain (w : nat) (Hw : w < succ n ∧ P w), from H, and.rec_on Hw (λ hltsn hp, or.rec_on (eq_or_lt_of_le (le_of_succ_le_succ hltsn)) (λ heq : w = n, absurd (eq.rec_on heq hp) H₂) (λ hltn : w < n, absurd (exists.intro w (and.intro hltn hp)) H₁)) definition ball_zero (P : nat → Prop) : ball zero P := λ x Hlt, absurd Hlt !not_lt_zero definition ball_of_ball_succ {n : nat} {P : nat → Prop} (H : ball (succ n) P) : ball n P := λ x Hlt, H x (lt.step Hlt) definition ball_succ_of_ball {n : nat} {P : nat → Prop} (H₁ : ball n P) (H₂ : P n) : ball (succ n) P := λ (x : nat) (Hlt : x < succ n), or.elim (eq_or_lt_of_le (le_of_succ_le_succ Hlt)) (λ heq : x = n, eq.rec_on (eq.rec_on heq rfl) H₂) (λ hlt : x < n, H₁ x hlt) definition not_ball_of_not {n : nat} {P : nat → Prop} (H₁ : ¬ P n) : ¬ ball (succ n) P := λ (H : ball (succ n) P), absurd (H n (lt.base n)) H₁ definition not_ball_succ_of_not_ball {n : nat} {P : nat → Prop} (H₁ : ¬ ball n P) : ¬ ball (succ n) P := λ (H : ball (succ n) P), absurd (ball_of_ball_succ H) H₁ end nat section open nat decidable definition decidable_bex [instance] (n : nat) (P : nat → Prop) [H : decidable_pred P] : decidable (bex n P) := nat.rec_on n (inr (not_bex_zero P)) (λ a ih, decidable.rec_on ih (λ hpos : bex a P, inl (bex_succ hpos)) (λ hneg : ¬ bex a P, decidable.rec_on (H a) (λ hpa : P a, inl (bex_succ_of_pred hpa)) (λ hna : ¬ P a, inr (not_bex_succ hneg hna)))) definition decidable_ball [instance] (n : nat) (P : nat → Prop) [H : decidable_pred P] : decidable (ball n P) := nat.rec_on n (inl (ball_zero P)) (λ n₁ ih, decidable.rec_on ih (λ ih_pos, decidable.rec_on (H n₁) (λ p_pos, inl (ball_succ_of_ball ih_pos p_pos)) (λ p_neg, inr (not_ball_of_not p_neg))) (λ ih_neg, inr (not_ball_succ_of_not_ball ih_neg))) definition decidable_bex_le [instance] (n : nat) (P : nat → Prop) [H : decidable_pred P] : decidable (∃ x, x ≤ n ∧ P x) := decidable_of_decidable_of_iff (decidable_bex (succ n) P) (exists_congr (λn, and_iff_and !lt_succ_iff_le !iff.refl)) definition decidable_ball_le [instance] (n : nat) (P : nat → Prop) [H : decidable_pred P] : decidable (∀ x, x ≤ n → P x) := decidable_of_decidable_of_iff (decidable_ball (succ n) P) (forall_congr (λn, imp_iff_imp !lt_succ_iff_le !iff.refl)) end