import logic theorem tst {a b c : Prop} : a → b → c → a ∧ b := begin intros [Ha, Hb, Hc], reverts [Hb, Ha], intros [Hb2, Ha2], apply (and.intro Ha2 Hb2), end theorem foo1 {A : Type} (a b c : A) (P : A → Prop) : P a → a = b → P b := begin intros [Hp, Heq], reverts [Heq, Hp], intro Heq, eapply (eq.rec_on Heq), intro Pa, apply Pa end theorem foo2 {A : Type} (a b c : A) (P : A → Prop) : P a → a = b → P b := begin intros [Hp, Heq], apply (eq.rec_on Heq Hp) end print definition foo1 print definition foo2