open equiv constants (A B : Type₀) (f : A → B) (g : B → A) (p : Πb, f (g b) = b) (q : Πa, g (f a) = a) definition e [constructor] : A ≃ B := equiv.MK f g p q example (b : B) : g (f (g b)) = g b := by rewrite [to_right_inv e b] example (b : B) : g (f (g b)) = g b := by xrewrite [to_right_inv e b] example (b : B) : g (f (g b)) = g b := by krewrite [to_right_inv e b] example (b : B) : g (f (g b)) = g b := begin note H := to_right_inv e b, esimp at H, rewrite H end