/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Properties of the power operation in an ordered ring. (Right now, this file is just a stub. More soon.) -/ import .group_power open nat namespace algebra variable {A : Type} section linear_ordered_semiring variable [s : linear_ordered_semiring A] include s theorem pow_pos_of_pos {x : A} (i : ℕ) (H : x > 0) : x^i > 0 := begin induction i with [j, ih], {show (1 : A) > 0, from zero_lt_one}, {show x^(succ j) > 0, from mul_pos H ih} end theorem pow_nonneg_of_nonneg {x : A} (i : ℕ) (H : x ≥ 0) : x^i ≥ 0 := begin induction i with [j, ih], {show (1 : A) ≥ 0, from le_of_lt zero_lt_one}, {show x^(succ j) ≥ 0, from mul_nonneg H ih} end theorem pow_le_pow_of_le {x y : A} (i : ℕ) (H₁ : 0 ≤ x) (H₂ : x ≤ y) : x^i ≤ y^i := begin induction i with [i, ih], {rewrite *pow_zero, apply le.refl}, rewrite *pow_succ, have H : 0 ≤ x^i, from pow_nonneg_of_nonneg i H₁, apply mul_le_mul H₂ ih H (le.trans H₁ H₂) end theorem pow_ge_one {x : A} (i : ℕ) (xge1 : x ≥ 1) : x^i ≥ 1 := assert H : x^i ≥ 1^i, from pow_le_pow_of_le i (le_of_lt zero_lt_one) xge1, by rewrite one_pow at H; exact H set_option formatter.hide_full_terms false theorem pow_gt_one {x : A} {i : ℕ} (xgt1 : x > 1) (ipos : i > 0) : x^i > 1 := assert xpos : x > 0, from lt.trans zero_lt_one xgt1, begin induction i with [i, ih], {exfalso, exact !nat.lt.irrefl ipos}, have xige1 : x^i ≥ 1, from pow_ge_one _ (le_of_lt xgt1), rewrite [pow_succ, -mul_one 1, ↑has_lt.gt], apply mul_lt_mul xgt1 xige1 zero_lt_one, apply le_of_lt xpos end end linear_ordered_semiring end algebra