/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura Parity -/ import data.nat.div logic.identities namespace nat open decidable definition even (n : nat) := n mod 2 = 0 definition decidable_even [instance] : ∀ n, decidable (even n) := λ n, !nat.has_decidable_eq definition odd (n : nat) := ¬even n definition decidable_odd [instance] : ∀ n, decidable (odd n) := λ n, decidable_not lemma even_of_dvd {n} : 2 ∣ n → even n := mod_eq_zero_of_dvd lemma dvd_of_even {n} : even n → 2 ∣ n := dvd_of_mod_eq_zero lemma not_odd_zero : ¬ odd 0 := dec_trivial lemma even_zero : even 0 := dec_trivial lemma odd_one : odd 1 := dec_trivial lemma not_even_one : ¬ even 1 := dec_trivial lemma odd_eq_not_even : ∀ n, odd n = ¬ even n := λ n, rfl lemma odd_iff_not_even : ∀ n, odd n ↔ ¬ even n := λ n, !iff.refl lemma odd_of_not_even {n} : ¬ even n → odd n := λ h, iff.mp' !odd_iff_not_even h lemma even_of_not_odd {n} : ¬ odd n → even n := λ h, not_not_elim (iff.mp (not_iff_not_of_iff !odd_iff_not_even) h) lemma not_odd_of_even {n} : even n → ¬ odd n := λ h, iff.mp' (not_iff_not_of_iff !odd_iff_not_even) (not_not_intro h) lemma not_even_of_odd {n} : odd n → ¬ even n := λ h, iff.mp !odd_iff_not_even h lemma odd_succ_of_even {n} : even n → odd (succ n) := λ h, by_contradiction (λ hn : ¬ odd (succ n), assert 0 = 1, from calc 0 = (n+1) mod 2 : even_of_not_odd hn ... = 1 mod 2 : add_mod_eq_add_mod_right 1 h, by contradiction) lemma eq_1_of_ne_0_lt_2 : ∀ {n : nat}, n ≠ 0 → n < 2 → n = 1 | 0 h₁ h₂ := absurd rfl h₁ | 1 h₁ h₂ := rfl | (n+2) h₁ h₂ := absurd (lt_of_succ_lt_succ (lt_of_succ_lt_succ h₂)) !not_lt_zero lemma mod_eq_of_odd {n} : odd n → n mod 2 = 1 := λ h, have h₁ : ¬ n mod 2 = 0, from h, have h₂ : n mod 2 < 2, from mod_lt n dec_trivial, eq_1_of_ne_0_lt_2 h₁ h₂ lemma odd_of_mod_eq {n} : n mod 2 = 1 → odd n := λ h, by_contradiction (λ hn, assert h₁ : n mod 2 = 0, from even_of_not_odd hn, by rewrite h at h₁; contradiction) lemma even_succ_of_odd {n} : odd n → even (succ n) := λ h, have h₁ : n mod 2 = 1, from mod_eq_of_odd h, have h₂ : n mod 2 = 1 mod 2, from mod_eq_of_odd h, have h₃ : (n+1) mod 2 = 0, from add_mod_eq_add_mod_right 1 h₂, h₃ lemma odd_succ_succ_of_odd {n} : odd n → odd (succ (succ n)) := λ h, odd_succ_of_even (even_succ_of_odd h) lemma even_succ_succ_of_even {n} : even n → even (succ (succ n)) := λ h, even_succ_of_odd (odd_succ_of_even h) lemma even_of_odd_succ {n} : odd (succ n) → even n := λ h, by_contradiction (λ he, have h₁ : odd n, from odd_of_not_even he, have h₂ : even (succ n), from even_succ_of_odd h₁, absurd h₂ (not_even_of_odd h)) lemma odd_of_even_succ {n} : even (succ n) → odd n := λ h, by_contradiction (λ he, have h₁ : even n, from even_of_not_odd he, have h₂ : odd (succ n), from odd_succ_of_even h₁, absurd h (not_even_of_odd h₂)) lemma even_of_even_succ_succ {n} : even (succ (succ n)) → even n := λ h, even_of_odd_succ (odd_of_even_succ h) lemma odd_of_odd_succ_succ {n} : odd (succ (succ n)) → odd n := λ h, odd_of_even_succ (even_of_odd_succ h) lemma dvd_of_odd {n} : odd n → 2 ∣ n+1 := λ h, dvd_of_even (even_succ_of_odd h) lemma odd_of_dvd {n} : 2 ∣ n+1 → odd n := λ h, odd_of_even_succ (even_of_dvd h) lemma even_two_mul : ∀ n, even (2 * n) := λ n, even_of_dvd (dvd_mul_right 2 n) lemma odd_two_mul_plus_one : ∀ n, odd (2 * n + 1) := λ n, odd_succ_of_even (even_two_mul n) lemma not_even_two_mul_plus_one : ∀ n, ¬ even (2 * n + 1) := λ n, not_even_of_odd (odd_two_mul_plus_one n) lemma not_odd_two_mul : ∀ n, ¬ odd (2 * n) := λ n, not_odd_of_even (even_two_mul n) lemma even_pred_of_odd : ∀ {n}, odd n → even (pred n) | 0 h := absurd h not_odd_zero | (n+1) h := even_of_odd_succ h lemma even_or_odd : ∀ n, even n ∨ odd n := λ n, by_cases (λ h : even n, or.inl h) (λ h : ¬ even n, or.inr (odd_of_not_even h)) lemma exists_of_even {n} : even n → ∃ k, n = 2*k := λ h, exists_eq_mul_right_of_dvd (dvd_of_even h) lemma exists_of_odd : ∀ {n}, odd n → ∃ k, n = 2*k + 1 | 0 h := absurd h not_odd_zero | (n+1) h := obtain k (hk : n = 2*k), from exists_of_even (even_of_odd_succ h), exists.intro k (by subst n) lemma even_of_exists {n} : (∃ k, n = 2 * k) → even n := λ h, obtain k (hk : n = 2 * k), from h, have h₁ : 2 ∣ n, by subst n; apply dvd_mul_right, even_of_dvd h₁ lemma odd_of_exists {n} : (∃ k, n = 2 * k + 1) → odd n := λ h, by_contradiction (λ hn, have h₁ : even n, from even_of_not_odd hn, have h₂ : ∃ k, n = 2 * k, from exists_of_even h₁, obtain k₁ (hk₁ : n = 2 * k₁ + 1), from h, obtain k₂ (hk₂ : n = 2 * k₂), from h₂, assert h₃ : (2 * k₁ + 1) mod 2 = (2 * k₂) mod 2, by rewrite [-hk₁, -hk₂], begin rewrite [mul_mod_right at h₃, add.comm at h₃, add_mul_mod_self_left at h₃], contradiction end) lemma even_add_of_even_of_even {n m} : even n → even m → even (n+m) := λ h₁ h₂, obtain k₁ (hk₁ : n = 2 * k₁), from exists_of_even h₁, obtain k₂ (hk₂ : m = 2 * k₂), from exists_of_even h₂, even_of_exists (exists.intro (k₁+k₂) (by rewrite [hk₁, hk₂, mul.left_distrib])) lemma even_add_of_odd_of_odd {n m} : odd n → odd m → even (n+m) := λ h₁ h₂, assert h₃ : even (succ n + succ m), from even_add_of_even_of_even (even_succ_of_odd h₁) (even_succ_of_odd h₂), have h₄ : even(succ (succ (n + m))), by rewrite [add_succ at h₃, succ_add at h₃]; exact h₃, even_of_even_succ_succ h₄ lemma odd_add_of_even_of_odd {n m} : even n → odd m → odd (n+m) := λ h₁ h₂, assert h₃ : even (n + succ m), from even_add_of_even_of_even h₁ (even_succ_of_odd h₂), odd_of_even_succ h₃ lemma odd_add_of_odd_of_even {n m} : odd n → even m → odd (n+m) := λ h₁ h₂, assert h₃ : odd (m+n), from odd_add_of_even_of_odd h₂ h₁, by rewrite add.comm at h₃; exact h₃ lemma even_mul_of_even_left {n} (m) : even n → even (n*m) := λ h, obtain k (hk : n = 2*k), from exists_of_even h, even_of_exists (exists.intro (k*m) (by rewrite [hk, mul.assoc])) lemma even_mul_of_even_right {n} (m) : even n → even (m*n) := λ h₁, assert h₂ : even (n*m), from even_mul_of_even_left _ h₁, by rewrite mul.comm at h₂; exact h₂ lemma odd_mul_of_odd_of_odd {n m} : odd n → odd m → odd (n*m) := λ h₁ h₂, assert h₃ : even (n * succ m), from even_mul_of_even_right _ (even_succ_of_odd h₂), assert h₄ : even (n * m + n), by rewrite mul_succ at h₃; exact h₃, by_contradiction (λ hn, assert h₅ : even (n*m), from even_of_not_odd hn, absurd h₄ (not_even_of_odd (odd_add_of_even_of_odd h₅ h₁))) end nat