import data.nat theorem tst2 (A B C D : Type) : (A × B) × (C × D) → C × B × A := assume p : (A × B) × (C × D), obtain [a b] [c d], from p, (c, b, a) theorem tst (a b c d : Prop) : (a ∧ b) ∧ (c ∧ d) → c ∧ b ∧ a := assume H, obtain [Ha Hb] Hc Hd, from H, and.intro Hc (and.intro Hb Ha) theorem tst22 (A B C D : Type) : (A × B) × (C × D) → C × B × A := assume p, obtain [a b] [c d], from p, (c, b, a) theorem tst3 (A B C D : Type) : A × B × C × D → C × B × A := assume p, obtain [[a b] c] d, from p, (c, b, a) example (p : nat → nat → Prop) : (∃ x, p x x) → ∃ x y, p x y := assume ex, obtain x pxx, from ex, exists.intro x (exists.intro x pxx) example (p q : nat → nat → Prop) : (∃ x y, p x y ∧ q x y ∧ q y x) → ∃ x y, p x y := assume ex, obtain x y pxy qxy qyx, from ex, exists.intro x (exists.intro y pxy) example (p : nat → nat → Type): (Σ x, p x x) → (Σ x y, p x y) := assume sig, obtain x pxx, from sig, ⟨x, x, pxx⟩ example (p q : nat → nat → Type) : (Σ x y, p x y × q x y × q y x) → Σ x y, p x y := assume ex : Σ x y, p x y × q x y × q y x, obtain x y [[pxy qxy] qyx], from ex, ⟨x, y, pxy⟩ example (p q : nat → nat → Type) : (Σ x y, p x y × q x y × q y x) → Σ x y, p x y := assume ex, have ex1 : Σ x y, p x y × q x y × q y x, from ex, obtain x y [[pxy qxy] qyx], from ex1, ⟨x, y, pxy⟩ example (p q : nat → nat → Type) : (Σ x y, p x y × q x y × q y x) → Σ x y, p x y := assume ex, obtain x y [[pxy qxy] qyx], from ex, ⟨x, y, pxy⟩ open nat definition even (a : nat) := ∃ x, a = 2*x example (a b : nat) (H₁ : even a) (H₂ : even b) : even (a+b) := obtain x (Hx : a = 2*x), from H₁, obtain y (Hy : b = 2*y), from H₂, exists.intro (x+y) (calc a+b = 2*x + 2*y : by rewrite [Hx, Hy] ... = 2*(x+y) : by rewrite mul.left_distrib) theorem dvd_of_dvd_add_left {m n₁ n₂ : ℕ} (H₁ : m ∣ n₁ + n₂) (H₂ : m ∣ n₁) : m ∣ n₂ := obtain (c₁ : nat) (Hc₁ : n₁ + n₂ = m * c₁), from H₁, obtain (c₂ : nat) (Hc₂ : n₁ = m * c₂), from H₂, have aux : m * (c₁ - c₂) = n₂, from calc m * (c₁ - c₂) = m * c₁ - m * c₂ : by rewrite mul_sub_left_distrib ... = n₁ + n₂ - m * c₂ : Hc₁ ... = n₁ + n₂ - n₁ : Hc₂ ... = n₂ : add_sub_cancel_left, dvd.intro aux