-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn -- category import logic.eq logic.connectives import data.unit data.sigma data.prod import algebra.function inductive category [class] (ob : Type) (mor : ob → ob → Type) : Type := mk : Π (comp : Π⦃A B C : ob⦄, mor B C → mor A B → mor A C) (id : Π {A : ob}, mor A A), (Π {A B C D : ob} {f : mor A B} {g : mor B C} {h : mor C D}, comp h (comp g f) = comp (comp h g) f) → (Π {A B : ob} {f : mor A B}, comp f id = f) → (Π {A B : ob} {f : mor A B}, comp id f = f) → category ob mor namespace category precedence `∘` : 60 section parameters {ob : Type} {mor : ob → ob → Type} {Cat : category ob mor} definition compose := rec (λ comp id assoc idr idl, comp) Cat definition id := rec (λ comp id assoc idr idl, id) Cat definition ID (A : ob) := @id A infixr `∘` := compose theorem assoc : Π {A B C D : ob} {f : mor A B} {g : mor B C} {h : mor C D}, h ∘ (g ∘ f) = (h ∘ g) ∘ f := rec (λ comp id assoc idr idl, assoc) Cat theorem id_right : Π {A B : ob} {f : mor A B}, f ∘ id = f := rec (λ comp id assoc idr idl, idr) Cat theorem id_left : Π {A B : ob} {f : mor A B}, id ∘ f = f := rec (λ comp id assoc idr idl, idl) Cat theorem id_left2 {A B : ob} {f : mor A B} : id ∘ f = f := rec (λ comp id assoc idr idl, idl A B f) Cat end end category