/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Properties of the power operation in an ordered ring or field. (Right now, this file is just a stub. More soon.) -/ import .group_power .ordered_field open nat namespace algebra variable {A : Type} section semiring variable [s : semiring A] include s definition semiring_has_pow_nat [reducible] [instance] : has_pow_nat A := monoid_has_pow_nat theorem zero_pow {m : ℕ} (mpos : m > 0) : 0^m = (0 : A) := have h₁ : ∀ m : nat, (0 : A)^(succ m) = (0 : A), begin intro m, induction m, rewrite pow_one, apply zero_mul end, obtain m' (h₂ : m = succ m'), from exists_eq_succ_of_pos mpos, show 0^m = 0, by rewrite h₂; apply h₁ end semiring section integral_domain variable [s : integral_domain A] include s definition integral_domain_has_pow_nat [reducible] [instance] : has_pow_nat A := monoid_has_pow_nat theorem eq_zero_of_pow_eq_zero {a : A} {m : ℕ} (H : a^m = 0) : a = 0 := or.elim (eq_zero_or_pos m) (suppose m = 0, by rewrite [`m = 0` at H, pow_zero at H]; apply absurd H (ne.symm zero_ne_one)) (suppose m > 0, have h₁ : ∀ m, a^succ m = 0 → a = 0, begin intro m, induction m with m ih, {rewrite pow_one; intros; assumption}, rewrite pow_succ, intro H, cases eq_zero_or_eq_zero_of_mul_eq_zero H with h₃ h₄, assumption, exact ih h₄ end, obtain m' (h₂ : m = succ m'), from exists_eq_succ_of_pos `m > 0`, show a = 0, by rewrite h₂ at H; apply h₁ m' H) theorem pow_ne_zero_of_ne_zero {a : A} {m : ℕ} (H : a ≠ 0) : a^m ≠ 0 := assume H', H (eq_zero_of_pow_eq_zero H') end integral_domain section division_ring variable [s : division_ring A] include s theorem division_ring.pow_ne_zero_of_ne_zero {a : A} {m : ℕ} (H : a ≠ 0) : a^m ≠ 0 := or.elim (eq_zero_or_pos m) (suppose m = 0, by rewrite [`m = 0`, pow_zero]; exact (ne.symm zero_ne_one)) (suppose m > 0, have h₁ : ∀ m, a^succ m ≠ 0, begin intro m, induction m with m ih, {rewrite pow_one; assumption}, rewrite pow_succ, apply division_ring.mul_ne_zero H ih end, obtain m' (h₂ : m = succ m'), from exists_eq_succ_of_pos `m > 0`, show a^m ≠ 0, by rewrite h₂; apply h₁ m') end division_ring section linear_ordered_semiring variable [s : linear_ordered_semiring A] include s theorem pow_pos_of_pos {x : A} (i : ℕ) (H : x > 0) : x^i > 0 := begin induction i with [j, ih], {show (1 : A) > 0, from zero_lt_one}, {show x^(succ j) > 0, from mul_pos H ih} end theorem pow_nonneg_of_nonneg {x : A} (i : ℕ) (H : x ≥ 0) : x^i ≥ 0 := begin induction i with j ih, {show (1 : A) ≥ 0, from le_of_lt zero_lt_one}, {show x^(succ j) ≥ 0, from mul_nonneg H ih} end theorem pow_le_pow_of_le {x y : A} (i : ℕ) (H₁ : 0 ≤ x) (H₂ : x ≤ y) : x^i ≤ y^i := begin induction i with i ih, {rewrite *pow_zero, apply le.refl}, rewrite *pow_succ, have H : 0 ≤ x^i, from pow_nonneg_of_nonneg i H₁, apply mul_le_mul H₂ ih H (le.trans H₁ H₂) end theorem pow_ge_one {x : A} (i : ℕ) (xge1 : x ≥ 1) : x^i ≥ 1 := assert H : x^i ≥ 1^i, from pow_le_pow_of_le i (le_of_lt zero_lt_one) xge1, by rewrite one_pow at H; exact H theorem pow_gt_one {x : A} {i : ℕ} (xgt1 : x > 1) (ipos : i > 0) : x^i > 1 := assert xpos : x > 0, from lt.trans zero_lt_one xgt1, begin induction i with [i, ih], {exfalso, exact !lt.irrefl ipos}, have xige1 : x^i ≥ 1, from pow_ge_one _ (le_of_lt xgt1), rewrite [pow_succ, -mul_one 1], apply mul_lt_mul xgt1 xige1 zero_lt_one, apply le_of_lt xpos end end linear_ordered_semiring section decidable_linear_ordered_comm_ring variable [s : decidable_linear_ordered_comm_ring A] include s definition decidable_linear_ordered_comm_ring_has_pow_nat [reducible] [instance] : has_pow_nat A := monoid_has_pow_nat theorem abs_pow (a : A) (n : ℕ) : abs (a^n) = abs a^n := begin induction n with n ih, rewrite [*pow_zero, (abs_of_nonneg zero_le_one : abs (1 : A) = 1)], rewrite [*pow_succ, abs_mul, ih] end end decidable_linear_ordered_comm_ring section field variable [s : field A] include s theorem field.div_pow (a : A) {b : A} {n : ℕ} (bnz : b ≠ 0) : (a / b)^n = a^n / b^n := begin induction n with n ih, rewrite [*pow_zero, div_one], have bnnz : b^n ≠ 0, from division_ring.pow_ne_zero_of_ne_zero bnz, rewrite [*pow_succ, ih, !field.div_mul_div bnz bnnz] end end field section discrete_field variable [s : discrete_field A] include s theorem div_pow (a : A) {b : A} {n : ℕ} : (a / b)^n = a^n / b^n := begin induction n with n ih, rewrite [*pow_zero, div_one], rewrite [*pow_succ, ih, div_mul_div] end end discrete_field end algebra