/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ import data.finset.card open nat nat.finset decidable open algebra namespace finset variable {A : Type} protected definition to_nat (s : finset nat) : nat := nat.finset.Sum s (λ n, 2^n) open finset (to_nat) lemma to_nat_empty : to_nat ∅ = 0 := rfl lemma to_nat_insert {n : nat} {s : finset nat} : n ∉ s → to_nat (insert n s) = 2^n + to_nat s := assume h, Sum_insert_of_not_mem _ h protected definition of_nat (s : nat) : finset nat := { n ∈ upto (succ s) | odd (s / 2^n) } open finset (of_nat) private lemma of_nat_zero : of_nat 0 = ∅ := rfl private lemma odd_of_mem_of_nat {n : nat} {s : nat} : n ∈ of_nat s → odd (s / 2^n) := assume h, of_mem_sep h private lemma mem_of_nat_of_odd {n : nat} {s : nat} : odd (s / 2^n) → n ∈ of_nat s := assume h, have 2^n < succ s, from by_contradiction (suppose ¬(2^n < succ s), assert 2^n > s, from lt_of_succ_le (le_of_not_gt this), assert s / 2^n = 0, from div_eq_zero_of_lt this, by rewrite this at h; exact absurd h dec_trivial), have n < succ s, from calc n ≤ 2^n : le_pow_self dec_trivial n ... < succ s : this, have n ∈ upto (succ s), from mem_upto_of_lt this, mem_sep_of_mem this h private lemma succ_mem_of_nat (n : nat) (s : nat) : succ n ∈ of_nat s ↔ n ∈ of_nat (s / 2) := iff.intro (suppose succ n ∈ of_nat s, assert odd (s / 2^(succ n)), from odd_of_mem_of_nat this, have odd ((s / 2) / (2 ^ n)), by rewrite [pow_succ' at this, nat.div_div_eq_div_mul, mul.comm]; assumption, show n ∈ of_nat (s / 2), from mem_of_nat_of_odd this) (suppose n ∈ of_nat (s / 2), assert odd ((s / 2) / (2 ^ n)), from odd_of_mem_of_nat this, assert odd (s / 2^(succ n)), by rewrite [pow_succ', mul.comm, -nat.div_div_eq_div_mul]; assumption, show succ n ∈ of_nat s, from mem_of_nat_of_odd this) private lemma odd_of_zero_mem (s : nat) : 0 ∈ of_nat s ↔ odd s := begin unfold of_nat, rewrite [mem_sep_eq, pow_zero, nat.div_one, mem_upto_eq], show 0 < succ s ∧ odd s ↔ odd s, from iff.intro (assume h, and.right h) (assume h, and.intro (zero_lt_succ s) h) end private lemma even_of_not_zero_mem (s : nat) : 0 ∉ of_nat s ↔ even s := have aux : 0 ∉ of_nat s ↔ ¬odd s, from not_iff_not_of_iff (odd_of_zero_mem s), iff.intro (suppose 0 ∉ of_nat s, even_of_not_odd (iff.mp aux this)) (suppose even s, iff.mpr aux (not_odd_of_even this)) private lemma even_to_nat (s : finset nat) : even (to_nat s) ↔ 0 ∉ s := finset.induction_on s dec_trivial (λ a s nains ih, begin rewrite [to_nat_insert nains], apply iff.intro, suppose even (2^a + to_nat s), by_cases (suppose e : even (2^a), by_cases (suppose even (to_nat s), assert 0 ∉ s, from iff.mp ih this, suppose 0 ∈ insert a s, or.elim (eq_or_mem_of_mem_insert this) (suppose 0 = a, begin rewrite [-this at e], exact absurd e not_even_one end) (by contradiction)) (suppose odd (to_nat s), absurd `even (2^a + to_nat s)` (odd_add_of_even_of_odd `even (2^a)` this))) (suppose o : odd (2^a), by_cases (suppose even (to_nat s), absurd `even (2^a + to_nat s)` (odd_add_of_odd_of_even `odd (2^a)` this)) (suppose odd (to_nat s), suppose 0 ∈ insert a s, or.elim (eq_or_mem_of_mem_insert this) (suppose 0 = a, have even (to_nat s), from iff.mpr ih (by rewrite -this at nains; exact nains), absurd this `odd (to_nat s)`) (suppose 0 ∈ s, assert a ≠ 0, from suppose a = 0, by subst a; contradiction, begin cases a with a, exact absurd rfl `0 ≠ 0`, have odd (2*2^a), by rewrite [pow_succ' at o, mul.comm]; exact o, have even (2*2^a), from !even_two_mul, exact absurd `even (2*2^a)` `odd (2*2^a)` end))), suppose 0 ∉ insert a s, have a ≠ 0, from suppose a = 0, absurd (by rewrite this; apply mem_insert) `0 ∉ insert a s`, have 0 ∉ s, from suppose 0 ∈ s, absurd (mem_insert_of_mem _ this) `0 ∉ insert a s`, have even (to_nat s), from iff.mpr ih this, match a with | 0 := suppose a = 0, absurd this `a ≠ 0` | (succ a') := suppose a = succ a', have even (2^(succ a')), by rewrite [pow_succ', mul.comm]; apply even_two_mul, even_add_of_even_of_even this `even (to_nat s)` end rfl end) private lemma of_nat_eq_insert_zero {s : nat} : 0 ∉ of_nat s → of_nat (2^0 + s) = insert 0 (of_nat s) := assume h : 0 ∉ of_nat s, assert even s, from iff.mp (even_of_not_zero_mem s) h, have odd (s+1), from odd_succ_of_even this, assert zmem : 0 ∈ of_nat (s+1), from iff.mpr (odd_of_zero_mem (s+1)) this, obtain w (hw : s = 2*w), from exists_of_even `even s`, begin rewrite [pow_zero, add.comm, hw], show of_nat (2*w+1) = insert 0 (of_nat (2*w)), from finset.ext (λ n, match n with | 0 := iff.intro (λ h, !mem_insert) (λ h, by rewrite [hw at zmem]; exact zmem) | succ m := assert d₁ : 1 / 2 = (0:nat), from dec_trivial, assert aux : _, from calc succ m ∈ of_nat (2 * w + 1) ↔ m ∈ of_nat ((2*w+1) / 2) : succ_mem_of_nat ... ↔ m ∈ of_nat w : by rewrite [add.comm, add_mul_div_self_left _ _ (dec_trivial : 2 > 0), d₁, zero_add] ... ↔ m ∈ of_nat (2*w / 2) : by rewrite [mul.comm, nat.mul_div_cancel _ (dec_trivial : 2 > 0)] ... ↔ succ m ∈ of_nat (2*w) : succ_mem_of_nat, iff.intro (λ hl, finset.mem_insert_of_mem _ (iff.mp aux hl)) (λ hr, or.elim (eq_or_mem_of_mem_insert hr) (by contradiction) (iff.mpr aux)) end) end private lemma of_nat_eq_insert : ∀ {n s : nat}, n ∉ of_nat s → of_nat (2^n + s) = insert n (of_nat s) | 0 s h := of_nat_eq_insert_zero h | (succ n) s h := have n ∉ of_nat (s / 2), from iff.mp (not_iff_not_of_iff !succ_mem_of_nat) h, assert ih : of_nat (2^n + s / 2) = insert n (of_nat (s / 2)), from of_nat_eq_insert this, finset.ext (λ x, have gen : ∀ m, m ∈ of_nat (2^(succ n) + s) ↔ m ∈ insert (succ n) (of_nat s) | zero := have even (2^(succ n)), by rewrite [pow_succ', mul.comm]; apply even_two_mul, have aux₁ : odd (2^(succ n) + s) ↔ odd s, from iff.intro (suppose odd (2^(succ n) + s), by_contradiction (suppose ¬ odd s, have even s, from even_of_not_odd this, have even (2^(succ n) + s), from even_add_of_even_of_even `even (2^(succ n))` this, absurd `odd (2^(succ n) + s)` (not_odd_of_even this))) (suppose odd s, odd_add_of_even_of_odd `even (2^(succ n))` this), have aux₂ : odd s ↔ 0 ∈ insert (succ n) (of_nat s), from iff.intro (suppose odd s, finset.mem_insert_of_mem _ (iff.mpr !odd_of_zero_mem this)) (suppose 0 ∈ insert (succ n) (of_nat s), or.elim (eq_or_mem_of_mem_insert this) (by contradiction) (suppose 0 ∈ of_nat s, iff.mp !odd_of_zero_mem this)), calc 0 ∈ of_nat (2^(succ n) + s) ↔ odd (2^(succ n) + s) : odd_of_zero_mem ... ↔ odd s : aux₁ ... ↔ 0 ∈ insert (succ n) (of_nat s) : aux₂ | (succ m) := assert aux : m ∈ insert n (of_nat (s / 2)) ↔ succ m ∈ insert (succ n) (of_nat s), from iff.intro (assume hl, or.elim (eq_or_mem_of_mem_insert hl) (suppose m = n, by subst m; apply mem_insert) (suppose m ∈ of_nat (s / 2), finset.mem_insert_of_mem _ (iff.mpr !succ_mem_of_nat this))) (assume hr, or.elim (eq_or_mem_of_mem_insert hr) (suppose succ m = succ n, assert m = n, by injection this; assumption, by subst m; apply mem_insert) (suppose succ m ∈ of_nat s, finset.mem_insert_of_mem _ (iff.mp !succ_mem_of_nat this))), calc succ m ∈ of_nat (2^(succ n) + s) ↔ succ m ∈ of_nat (2^n * 2 + s) : by rewrite pow_succ' ... ↔ m ∈ of_nat ((2^n * 2 + s) / 2) : succ_mem_of_nat ... ↔ m ∈ of_nat (2^n + s / 2) : by rewrite [add.comm, add_mul_div_self (dec_trivial : 2 > 0), add.comm] ... ↔ m ∈ insert n (of_nat (s / 2)) : by rewrite ih ... ↔ succ m ∈ insert (succ n) (of_nat s) : aux, gen x) lemma of_nat_to_nat (s : finset nat) : of_nat (to_nat s) = s := finset.induction_on s rfl (λ a s nains ih, by rewrite [to_nat_insert nains, -ih at nains, of_nat_eq_insert nains, ih]) private definition predimage (s : finset nat) : finset nat := { n ∈ image pred s | succ n ∈ s } private lemma mem_image_pred_of_succ_mem {n : nat} {s : finset nat} : succ n ∈ s → n ∈ image pred s := assume h, assert pred (succ n) ∈ image pred s, from mem_image_of_mem _ h, begin rewrite [pred_succ at this], assumption end private lemma mem_predimage_of_succ_mem {n : nat} {s : finset nat} : succ n ∈ s → n ∈ predimage s := assume h, begin unfold predimage, rewrite [mem_sep_eq], exact and.intro (mem_image_pred_of_succ_mem h) h end private lemma succ_mem_of_mem_predimage {n : nat} {s : finset nat} : n ∈ predimage s → succ n ∈ s := begin unfold predimage, rewrite [mem_sep_eq], suppose n ∈ image pred s ∧ succ n ∈ s, and.right this end private lemma predimage_insert_zero (s : finset nat) : predimage (insert 0 s) = predimage s := finset.ext (λ n, begin unfold predimage, rewrite [*mem_sep_eq, image_insert, pred_zero], apply iff.intro, suppose n ∈ insert 0 (image pred s) ∧ succ n ∈ insert 0 s, have succ n ∈ s, from or.elim (eq_or_mem_of_mem_insert (and.right this)) (by contradiction) (λ h, h), and.intro (mem_image_pred_of_succ_mem this) this, suppose n ∈ image pred s ∧ succ n ∈ s, obtain h₁ h₂, from this, and.intro (mem_insert_of_mem 0 h₁) (mem_insert_of_mem 0 h₂) end) private lemma predimage_insert_succ (n : nat) (s : finset nat) : predimage (insert (succ n) s) = insert n (predimage s) := finset.ext (λ m, begin unfold predimage, rewrite [*mem_sep_eq, *image_insert, pred_succ, *mem_insert_eq, *mem_sep_eq], apply iff.intro, suppose (m = n ∨ m ∈ image pred s) ∧ (succ m = succ n ∨ succ m ∈ s), obtain h₁ h₂, from this, or.elim h₁ (suppose m = n, or.inl this) (suppose m ∈ image pred s, or.elim h₂ (suppose succ m = succ n, by injection this; left; assumption) (suppose succ m ∈ s, by right; split; repeat assumption)), suppose m = n ∨ m ∈ image pred s ∧ succ m ∈ s, or.elim this (suppose m = n, and.intro (or.inl this) (or.inl (by subst m))) (suppose m ∈ image pred s ∧ succ m ∈ s, obtain h₁ h₂, from this, and.intro (or.inr h₁) (or.inr h₂)) end) private lemma of_nat_div2 (s : nat) : of_nat (s / 2) = predimage (of_nat s) := finset.ext (λ n, iff.intro (suppose n ∈ of_nat (s / 2), have succ n ∈ of_nat s, from iff.mpr !succ_mem_of_nat this, mem_predimage_of_succ_mem this) (suppose n ∈ predimage (of_nat s), have succ n ∈ of_nat s, from succ_mem_of_mem_predimage this, iff.mp !succ_mem_of_nat this)) private lemma to_nat_predimage (s : finset nat) : to_nat (predimage s) = (to_nat s) / 2 := begin induction s with a s nains ih, reflexivity, cases a with a, { rewrite [predimage_insert_zero, ih, to_nat_insert nains, pow_zero], have 0 ∉ of_nat (to_nat s), begin rewrite of_nat_to_nat, exact nains end, have even (to_nat s), from iff.mp !even_of_not_zero_mem this, obtain (w : nat) (hw : to_nat s = 2*w), from exists_of_even this, begin rewrite hw, have d₁ : 1 / 2 = (0:nat), from dec_trivial, show 2 * w / 2 = (1 + 2 * w) / 2, by rewrite [add_mul_div_self_left _ _ (dec_trivial : 2 > 0), mul.comm, nat.mul_div_cancel _ (dec_trivial : 2 > 0), d₁, zero_add] end }, { have a ∉ predimage s, from suppose a ∈ predimage s, absurd (succ_mem_of_mem_predimage this) nains, rewrite [predimage_insert_succ, to_nat_insert nains, pow_succ', add.comm, add_mul_div_self (dec_trivial : 2 > 0), -ih, to_nat_insert this, add.comm] } end lemma to_nat_of_nat (s : nat) : to_nat (of_nat s) = s := nat.strong_induction_on s (λ n ih, by_cases (suppose n = 0, by rewrite this) (suppose n ≠ 0, have n / 2 < n, from div_lt_of_ne_zero this, have to_nat (of_nat (n / 2)) = n / 2, from ih _ this, have e₁ : to_nat (of_nat n) / 2 = n / 2, from calc to_nat (of_nat n) / 2 = to_nat (predimage (of_nat n)) : by rewrite to_nat_predimage ... = to_nat (of_nat (n / 2)) : by rewrite of_nat_div2 ... = n / 2 : this, have e₂ : even (to_nat (of_nat n)) ↔ even n, from calc even (to_nat (of_nat n)) ↔ 0 ∉ of_nat n : even_to_nat ... ↔ even n : even_of_not_zero_mem, eq_of_div2_of_even e₁ e₂)) open equiv definition finset_nat_equiv_nat : finset nat ≃ nat := mk to_nat of_nat of_nat_to_nat to_nat_of_nat end finset