open nat definition id [unfold-full] {A : Type} (a : A) := a definition compose {A B C : Type} (g : B → C) (f : A → B) (a : A) := g (f a) notation g ∘ f := compose g f example (a b : nat) (H : a = b) : id a = b := begin esimp, state, exact H end example (a b : nat) (H : a = b) : (id ∘ id) a = b := begin esimp, state, exact H end attribute compose [unfold-full] example (a b : nat) (H : a = b) : (id ∘ id) a = b := begin esimp, state, exact H end