import logic data.nat.basic open nat inductive inftree (A : Type) : Type := leaf : A → inftree A, node : (nat → inftree A) → inftree A → inftree A namespace inftree inductive dsub {A : Type} : inftree A → inftree A → Prop := intro₁ : Π (f : nat → inftree A) (a : nat) (t : inftree A), dsub (f a) (node f t), intro₂ : Π (f : nat → inftree A) (a : nat) (t : inftree A), dsub t (node f t) definition dsub.node.acc {A : Type} (f : nat → inftree A) (hf : ∀a, acc dsub (f a)) (t : inftree A) (ht : acc dsub t) : acc dsub (node f t) := acc.intro (node f t) (λ (y : inftree A) (hlt : dsub y (node f t)), have aux : ∀ z, dsub y z → node f t = z → acc dsub y, from λ z hlt, dsub.rec_on hlt (λ f₁ n t₁ (heq : (node f t = node f₁ t₁)), inftree.no_confusion heq (λ e₁ e₂, eq.rec_on e₁ (hf n))) (λ f₁ n t₁ (heq : (node f t = node f₁ t₁)), inftree.no_confusion heq (λ e₁ e₂, eq.rec_on e₂ ht)), aux (node f t) hlt rfl) definition dsub.leaf.acc {A : Type} (a : A) : acc dsub (leaf a) := acc.intro (leaf a) (λ (y : inftree A) (hlt : dsub y (leaf a)), have aux : ∀ z, dsub y z → leaf a = z → acc dsub y, from λz hlt, dsub.rec_on hlt (λ f n t (heq : leaf a = node f t), inftree.no_confusion heq) (λ f n t (heq : leaf a = node f t), inftree.no_confusion heq), aux (leaf a) hlt rfl) definition dsub.wf (A : Type) : well_founded (@dsub A) := well_founded.intro (λ (t : inftree A), rec_on t (λ a, dsub.leaf.acc a) (λ f t (ihf :∀a, acc dsub (f a)) (iht : acc dsub t), dsub.node.acc f ihf t iht)) end inftree