-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn import logic.axioms.funext open eq eq.ops inductive category [class] (ob : Type) : Type := mk : Π (hom : ob → ob → Type) (comp : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c) (id : Π {a : ob}, hom a a), (Π ⦃a b c d : ob⦄ {h : hom c d} {g : hom b c} {f : hom a b}, comp h (comp g f) = comp (comp h g) f) → (Π ⦃a b : ob⦄ {f : hom a b}, comp id f = f) → (Π ⦃a b : ob⦄ {f : hom a b}, comp f id = f) → category ob namespace category variables {ob : Type} [C : category ob] variables {a b c d : ob} include C definition hom [reducible] : ob → ob → Type := rec (λ hom compose id assoc idr idl, hom) C -- note: needs to be reducible to typecheck composition in opposite category definition compose [reducible] : Π {a b c : ob}, hom b c → hom a b → hom a c := rec (λ hom compose id assoc idr idl, compose) C definition id [reducible] : Π {a : ob}, hom a a := rec (λ hom compose id assoc idr idl, id) C definition ID [reducible] : Π (a : ob), hom a a := @id ob C infixr `∘`:60 := compose infixl `⟶`:25 := hom -- input ⟶ using \--> (this is a different arrow than \-> (→)) variables {h : hom c d} {g : hom b c} {f : hom a b} {i : hom a a} theorem assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b), h ∘ (g ∘ f) = (h ∘ g) ∘ f := rec (λ hom comp id assoc idr idl, assoc) C theorem id_left : Π ⦃a b : ob⦄ (f : hom a b), id ∘ f = f := rec (λ hom comp id assoc idl idr, idl) C theorem id_right : Π ⦃a b : ob⦄ (f : hom a b), f ∘ id = f := rec (λ hom comp id assoc idl idr, idr) C theorem id_compose (a : ob) : (ID a) ∘ id = id := !id_left theorem left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id := calc i = i ∘ id : id_right ... = id : H theorem right_id_unique (H : Π{b} {f : hom a b}, f ∘ i = f) : i = id := calc i = id ∘ i : id_left ... = id : H end category inductive Category : Type := mk : Π (ob : Type), category ob → Category namespace category definition objects [coercion] (C : Category) : Type := Category.rec (fun c s, c) C definition category_instance [instance] (C : Category) : category (objects C) := Category.rec (fun c s, s) C end category open category inductive functor {obC obD : Type} (C : category obC) (D : category obD) : Type := mk : Π (obF : obC → obD) (homF : Π⦃a b : obC⦄, hom a b → hom (obF a) (obF b)), (Π ⦃a : obC⦄, homF (ID a) = ID (obF a)) → (Π ⦃a b c : obC⦄ {g : hom b c} {f : hom a b}, homF (g ∘ f) = homF g ∘ homF f) → functor C D inductive Functor (C D : Category) : Type := mk : functor (category_instance C) (category_instance D) → Functor C D infixl `⇒`:25 := functor namespace functor variables {obC obD obE : Type} {C : category obC} {D : category obD} {E : category obE} definition object [coercion] (F : C ⇒ D) : obC → obD := rec (λ obF homF Hid Hcomp, obF) F definition morphism [coercion] (F : C ⇒ D) : Π{a b : obC}, hom a b → hom (F a) (F b) := rec (λ obF homF Hid Hcomp, homF) F theorem respect_id (F : C ⇒ D) : Π (a : obC), F (ID a) = id := rec (λ obF homF Hid Hcomp, Hid) F theorem respect_comp (F : C ⇒ D) : Π ⦃a b c : obC⦄ (g : hom b c) (f : hom a b), F (g ∘ f) = F g ∘ F f := rec (λ obF homF Hid Hcomp, Hcomp) F protected definition compose (G : D ⇒ E) (F : C ⇒ D) : C ⇒ E := functor.mk (λx, G (F x)) (λ a b f, G (F f)) (λ a, calc G (F (ID a)) = G id : respect_id F a ... = id : respect_id G (F a)) (λ a b c g f, calc G (F (g ∘ f)) = G (F g ∘ F f) : respect_comp F g f ... = G (F g) ∘ G (F f) : respect_comp G (F g) (F f)) infixr `∘f`:60 := compose protected theorem assoc {obA obB obC obD : Type} {A : category obA} {B : category obB} {C : category obC} {D : category obD} (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) : H ∘f (G ∘f F) = (H ∘f G) ∘f F := rfl -- later check whether we want implicit or explicit arguments here. For the moment, define both protected definition id {ob : Type} {C : category ob} : functor C C := mk (λa, a) (λ a b f, f) (λ a, rfl) (λ a b c f g, rfl) protected definition ID {ob : Type} (C : category ob) : functor C C := id protected definition Id {C : Category} : Functor C C := Functor.mk id protected definition iD (C : Category) : Functor C C := Functor.mk id protected theorem id_left (F : C ⇒ D) : id ∘f F = F := rec (λ obF homF idF compF, rfl) F protected theorem id_right (F : C ⇒ D) : F ∘f id = F := rec (λ obF homF idF compF, rfl) F variables {C₁ C₂ C₃ C₄: Category} definition Functor_functor (F : Functor C₁ C₂) : functor (category_instance C₁) (category_instance C₂) := Functor.rec (λ x, x) F protected definition Compose (G : Functor C₂ C₃) (F : Functor C₁ C₂) : Functor C₁ C₃ := Functor.mk (compose (Functor_functor G) (Functor_functor F)) infixr `∘F`:60 := Compose protected definition Assoc (H : Functor C₃ C₄) (G : Functor C₂ C₃) (F : Functor C₁ C₂) : H ∘F (G ∘F F) = (H ∘F G) ∘F F := rfl protected theorem Id_left (F : Functor C₁ C₂) : Id ∘F F = F := Functor.rec (λ f, subst !id_left rfl) F protected theorem Id_right {F : Functor C₁ C₂} : F ∘F Id = F := Functor.rec (λ f, subst !id_right rfl) F end functor open functor inductive natural_transformation {obC obD : Type} {C : category obC} {D : category obD} (F G : functor C D) : Type := mk : Π (η : Π(a : obC), hom (F a) (G a)), (Π{a b : obC} (f : hom a b), G f ∘ η a = η b ∘ F f) → natural_transformation F G -- inductive Natural_transformation {C D : Category} (F G : Functor C D) : Type := -- mk : natural_transformation (Functor_functor F) (Functor_functor G) → Natural_transformation F G infixl `⟹`:25 := natural_transformation namespace natural_transformation variables {obC obD : Type} {C : category obC} {D : category obD} {F G H : C ⇒ D} definition natural_map [coercion] (η : F ⟹ G) : Π(a : obC), hom (F a) (G a) := rec (λ x y, x) η definition naturality (η : F ⟹ G) : Π{a b : obC} (f : hom a b), G f ∘ η a = η b ∘ F f := rec (λ x y, y) η protected definition compose (η : G ⟹ H) (θ : F ⟹ G) : F ⟹ H := natural_transformation.mk (λ a, η a ∘ θ a) (λ a b f, calc H f ∘ (η a ∘ θ a) = (H f ∘ η a) ∘ θ a : assoc ... = (η b ∘ G f) ∘ θ a : naturality η f ... = η b ∘ (G f ∘ θ a) : assoc ... = η b ∘ (θ b ∘ F f) : naturality θ f ... = (η b ∘ θ b) ∘ F f : assoc) precedence `∘n` : 60 infixr `∘n` := compose variables {F₁ F₂ F₃ F₄ : C ⇒ D} protected theorem assoc (η₃ : F₃ ⟹ F₄) (η₂ : F₂ ⟹ F₃) (η₁ : F₁ ⟹ F₂) : η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ := congr_arg2_dep mk (funext (take x, !assoc)) !proof_irrel --TODO: check whether some of the below identities are superfluous protected definition id {obC obD : Type} {C : category obC} {D : category obD} {F : C ⇒ D} : natural_transformation F F := mk (λa, id) (λa b f, !id_right ⬝ symm !id_left) protected definition ID {obC obD : Type} {C : category obC} {D : category obD} (F : C ⇒ D) : natural_transformation F F := id -- protected definition Id {C D : Category} {F : Functor C D} : Natural_transformation F F := -- Natural_transformation.mk id -- protected definition iD {C D : Category} (F : Functor C D) : Natural_transformation F F := -- Natural_transformation.mk id protected theorem id_left (η : F₁ ⟹ F₂) : natural_transformation.compose id η = η := rec (λf H, congr_arg2_dep mk (funext (take x, !id_left)) !proof_irrel) η protected theorem id_right (η : F₁ ⟹ F₂) : natural_transformation.compose η id = η := rec (λf H, congr_arg2_dep mk (funext (take x, !id_right)) !proof_irrel) η end natural_transformation