-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import .eq .quantifiers open eq.ops -- cast.lean -- ========= definition cast {A B : Type} (H : A = B) (a : A) : B := eq.rec a H theorem cast_refl {A : Type} (a : A) : cast (eq.refl A) a = a := rfl theorem cast_proof_irrel {A B : Type} (H₁ H₂ : A = B) (a : A) : cast H₁ a = cast H₂ a := rfl theorem cast_eq {A : Type} (H : A = A) (a : A) : cast H a = a := rfl inductive heq {A : Type} (a : A) : Π {B : Type}, B → Prop := refl : heq a a infixl `==`:50 := heq namespace heq theorem drec_on {A B : Type} {a : A} {b : B} {C : Π {B : Type} (b : B), a == b → Type} (H₁ : a == b) (H₂ : C a (refl a)) : C b H₁ := rec (λ H₁ : a == a, show C a H₁, from H₂) H₁ H₁ theorem subst {A B : Type} {a : A} {b : B} {P : ∀T : Type, T → Prop} (H₁ : a == b) (H₂ : P A a) : P B b := rec_on H₁ H₂ theorem symm {A B : Type} {a : A} {b : B} (H : a == b) : b == a := subst H (refl a) theorem type_eq {A B : Type} {a : A} {b : B} (H : a == b) : A = B := subst H (eq.refl A) theorem from_eq {A : Type} {a b : A} (H : a = b) : a == b := eq.subst H (refl a) theorem trans {A B C : Type} {a : A} {b : B} {c : C} (H₁ : a == b) (H₂ : b == c) : a == c := subst H₂ H₁ theorem trans_left {A B : Type} {a : A} {b c : B} (H₁ : a == b) (H₂ : b = c) : a == c := trans H₁ (from_eq H₂) theorem trans_right {A C : Type} {a b : A} {c : C} (H₁ : a = b) (H₂ : b == c) : a == c := trans (from_eq H₁) H₂ theorem to_cast_eq {A B : Type} {a : A} {b : B} (H : a == b) : cast (type_eq H) a = b := drec_on H !cast_eq theorem to_eq {A : Type} {a b : A} (H : a == b) : a = b := calc a = cast (eq.refl A) a : !cast_eq⁻¹ ... = b : to_cast_eq H theorem elim {A B : Type} {C : Prop} {a : A} {b : B} (H₁ : a == b) (H₂ : ∀ (Hab : A = B), cast Hab a = b → C) : C := H₂ (type_eq H₁) (to_cast_eq H₁) end heq calc_trans heq.trans calc_trans heq.trans_left calc_trans heq.trans_right calc_symm heq.symm theorem cast_heq {A B : Type} (H : A = B) (a : A) : cast H a == a := have H₁ : ∀ (H : A = A) (a : A), cast H a == a, from assume H a, heq.from_eq (cast_eq H a), eq.subst H H₁ H a theorem cast_eq_to_heq {A B : Type} {a : A} {b : B} {H : A = B} (H₁ : cast H a = b) : a == b := calc a == cast H a : heq.symm (cast_heq H a) ... = b : H₁ theorem heq.true_elim {a : Prop} (H : a == true) : a := eq_true_elim (heq.to_eq H) theorem cast_trans {A B C : Type} (Hab : A = B) (Hbc : B = C) (a : A) : cast Hbc (cast Hab a) = cast (Hab ⬝ Hbc) a := heq.to_eq (calc cast Hbc (cast Hab a) == cast Hab a : cast_heq Hbc (cast Hab a) ... == a : cast_heq Hab a ... == cast (Hab ⬝ Hbc) a : heq.symm (cast_heq (Hab ⬝ Hbc) a)) theorem pi_eq {A : Type} {B B' : A → Type} (H : B = B') : (Π x, B x) = (Π x, B' x) := H ▸ (eq.refl (Π x, B x)) theorem dcongr_arg {A : Type} {B : A → Type} (f : Πx, B x) {a b : A} (H : a = b) : f a == f b := have e1 : ∀ (H : B a = B a), cast H (f a) = f a, from assume H, cast_eq H (f a), have e2 : ∀ (H : B a = B b), cast H (f a) = f b, from H ▸ e1, have e3 : cast (congr_arg B H) (f a) = f b, from e2 (congr_arg B H), cast_eq_to_heq e3 theorem cast_app' {A : Type} {B B' : A → Type} (H : B = B') (f : Π x, B x) (a : A) : cast (pi_eq H) f a == f a := have H₁ : ∀ (H : (Π x, B x) = (Π x, B x)), cast H f a == f a, from assume H, heq.from_eq (congr_fun (cast_eq H f) a), have H₂ : ∀ (H : (Π x, B x) = (Π x, B' x)), cast H f a == f a, from H ▸ H₁, H₂ (pi_eq H) theorem cast_pull {A : Type} {B B' : A → Type} (H : B = B') (f : Π x, B x) (a : A) : cast (pi_eq H) f a = cast (congr_fun H a) (f a) := heq.to_eq (calc cast (pi_eq H) f a == f a : cast_app' H f a ... == cast (congr_fun H a) (f a) : heq.symm (cast_heq (congr_fun H a) (f a))) theorem hcongr_fun' {A : Type} {B B' : A → Type} {f : Π x, B x} {f' : Π x, B' x} (a : A) (H₁ : f == f') (H₂ : B = B') : f a == f' a := heq.elim H₁ (λ (Ht : (Π x, B x) = (Π x, B' x)) (Hw : cast Ht f = f'), calc f a == cast (pi_eq H₂) f a : heq.symm (cast_app' H₂ f a) ... = cast Ht f a : eq.refl (cast Ht f a) ... = f' a : congr_fun Hw a)