/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Haitao Zhang The propositional connectives. See also init.datatypes and init.logic. -/ open eq.ops variables {a b c d : Prop} /- implies -/ definition imp (a b : Prop) : Prop := a → b theorem imp.id (H : a) : a := H theorem imp.intro (H : a) (H₂ : b) : a := H theorem imp.mp (H : a) (H₂ : a → b) : b := H₂ H theorem imp.syl (H : a → b) (H₂ : c → a) (Hc : c) : b := H (H₂ Hc) theorem imp.left (H : a → b) (H₂ : b → c) (Ha : a) : c := H₂ (H Ha) theorem imp_true (a : Prop) : (a → true) ↔ true := iff_true_intro (imp.intro trivial) theorem true_imp (a : Prop) : (true → a) ↔ a := iff.intro (assume H, H trivial) imp.intro theorem imp_false (a : Prop) : (a → false) ↔ ¬ a := iff.rfl theorem false_imp (a : Prop) : (false → a) ↔ true := iff_true_intro false.elim theorem imp_iff_imp (H1 : a ↔ c) (H2 : b ↔ d) : (a → b) ↔ (c → d) := iff.intro (λHab Hc, iff.mp H2 (Hab (iff.mpr H1 Hc))) (λHcd Ha, iff.mpr H2 (Hcd (iff.mp H1 Ha))) /- not -/ theorem not.elim {A : Type} (H1 : ¬a) (H2 : a) : A := absurd H2 H1 theorem not.intro (H : a → false) : ¬a := H theorem not.mto {a b : Prop} : (a → b) → ¬b → ¬a := imp.left theorem not_imp_not_of_imp {a b : Prop} : (a → b) → ¬b → ¬a := not.mto theorem not_not_of_not_implies : ¬(a → b) → ¬¬a := not.mto not.elim theorem not_of_not_implies : ¬(a → b) → ¬b := not.mto imp.intro theorem not_not_em : ¬¬(a ∨ ¬a) := assume not_em : ¬(a ∨ ¬a), not_em (or.inr (not.mto or.inl not_em)) theorem not_iff_not (H : a ↔ b) : ¬a ↔ ¬b := iff.intro (not.mto (iff.mpr H)) (not.mto (iff.mp H)) /- and -/ definition not_and_of_not_left (b : Prop) : ¬a → ¬(a ∧ b) := not.mto and.left definition not_and_of_not_right (a : Prop) {b : Prop} : ¬b → ¬(a ∧ b) := not.mto and.right theorem and.swap : a ∧ b → b ∧ a := and.rec (λHa Hb, and.intro Hb Ha) theorem and.imp (H₂ : a → c) (H₃ : b → d) : a ∧ b → c ∧ d := and.rec (λHa Hb, and.intro (H₂ Ha) (H₃ Hb)) theorem and.imp_left (H : a → b) : a ∧ c → b ∧ c := and.imp H imp.id theorem and.imp_right (H : a → b) : c ∧ a → c ∧ b := and.imp imp.id H theorem and_of_and_of_imp_of_imp (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d := and.imp H₂ H₃ H₁ theorem and_of_and_of_imp_left (H₁ : a ∧ c) (H : a → b) : b ∧ c := and.imp_left H H₁ theorem and_of_and_of_imp_right (H₁ : c ∧ a) (H : a → b) : c ∧ b := and.imp_right H H₁ theorem and.comm [simp] : a ∧ b ↔ b ∧ a := iff.intro and.swap and.swap theorem and.assoc [simp] : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) := iff.intro (assume H, obtain [Ha Hb] Hc, from H, and.intro Ha (and.intro Hb Hc)) (assume H, obtain Ha Hb Hc, from H, and.intro (and.intro Ha Hb) Hc) theorem and_iff_right {a b : Prop} (Ha : a) : (a ∧ b) ↔ b := iff.intro and.right (and.intro Ha) theorem and_iff_left {a b : Prop} (Hb : b) : (a ∧ b) ↔ a := iff.intro and.left (λHa, and.intro Ha Hb) theorem and_true [simp] (a : Prop) : a ∧ true ↔ a := and_iff_left trivial theorem true_and [simp] (a : Prop) : true ∧ a ↔ a := and_iff_right trivial theorem and_false [simp] (a : Prop) : a ∧ false ↔ false := iff_false_intro and.right theorem false_and [simp] (a : Prop) : false ∧ a ↔ false := iff_false_intro and.left theorem and_self [simp] (a : Prop) : a ∧ a ↔ a := iff.intro and.left (assume H, and.intro H H) theorem and_imp_iff (a b c : Prop) : (a ∧ b → c) ↔ (a → b → c) := iff.intro (λH a b, H (and.intro a b)) and.rec theorem and_imp_eq (a b c : Prop) : (a ∧ b → c) = (a → b → c) := propext !and_imp_iff theorem and_iff_and (H1 : a ↔ c) (H2 : b ↔ d) : (a ∧ b) ↔ (c ∧ d) := iff.intro (and.imp (iff.mp H1) (iff.mp H2)) (and.imp (iff.mpr H1) (iff.mpr H2)) /- or -/ definition not_or : ¬a → ¬b → ¬(a ∨ b) := or.rec theorem or.imp (H₂ : a → c) (H₃ : b → d) : a ∨ b → c ∨ d := or.rec (imp.syl or.inl H₂) (imp.syl or.inr H₃) theorem or.imp_left (H : a → b) : a ∨ c → b ∨ c := or.imp H imp.id theorem or.imp_right (H : a → b) : c ∨ a → c ∨ b := or.imp imp.id H theorem or_of_or_of_imp_of_imp (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → d) : c ∨ d := or.imp H₂ H₃ H₁ theorem or_of_or_of_imp_left (H₁ : a ∨ c) (H : a → b) : b ∨ c := or.imp_left H H₁ theorem or_of_or_of_imp_right (H₁ : c ∨ a) (H : a → b) : c ∨ b := or.imp_right H H₁ theorem or.elim3 (H : a ∨ b ∨ c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d := or.elim H Ha (assume H₂, or.elim H₂ Hb Hc) theorem or.swap : a ∨ b → b ∨ a := or.rec or.inr or.inl theorem or_resolve_right (H₁ : a ∨ b) (H₂ : ¬a) : b := or.elim H₁ (not.elim H₂) imp.id theorem or_resolve_left (H₁ : a ∨ b) : ¬b → a := or_resolve_right (or.swap H₁) theorem or.comm [simp] : a ∨ b ↔ b ∨ a := iff.intro or.swap or.swap theorem or.assoc [simp] : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) := iff.intro (or.rec (or.imp_right or.inl) (imp.syl or.inr or.inr)) (or.rec (imp.syl or.inl or.inl) (or.imp_left or.inr)) theorem or.imp_distrib : ((a ∨ b) → c) ↔ ((a → c) ∧ (b → c)) := iff.intro (λH, and.intro (imp.syl H or.inl) (imp.syl H or.inr)) (and.rec or.rec) theorem or_iff_right_of_imp {a b : Prop} (Ha : a → b) : (a ∨ b) ↔ b := iff.intro (or.rec Ha imp.id) or.inr theorem or_iff_left_of_imp {a b : Prop} (Hb : b → a) : (a ∨ b) ↔ a := iff.intro (or.rec imp.id Hb) or.inl theorem or_true [simp] (a : Prop) : a ∨ true ↔ true := iff_true_intro (or.inr trivial) theorem true_or [simp] (a : Prop) : true ∨ a ↔ true := iff_true_intro (or.inl trivial) theorem or_false [simp] (a : Prop) : a ∨ false ↔ a := iff.intro (or.rec imp.id false.elim) or.inl theorem false_or [simp] (a : Prop) : false ∨ a ↔ a := iff.trans or.comm !or_false theorem or_self (a : Prop) : a ∨ a ↔ a := iff.intro (or.rec imp.id imp.id) or.inl theorem or_iff_or (H1 : a ↔ c) (H2 : b ↔ d) : (a ∨ b) ↔ (c ∨ d) := iff.intro (or.imp (iff.mp H1) (iff.mp H2)) (or.imp (iff.mpr H1) (iff.mpr H2)) /- distributivity -/ theorem and.left_distrib (a b c : Prop) : a ∧ (b ∨ c) ↔ (a ∧ b) ∨ (a ∧ c) := iff.intro (and.rec (λH, or.imp (and.intro H) (and.intro H))) (or.rec (and.imp_right or.inl) (and.imp_right or.inr)) theorem and.right_distrib (a b c : Prop) : (a ∨ b) ∧ c ↔ (a ∧ c) ∨ (b ∧ c) := iff.trans (iff.trans !and.comm !and.left_distrib) (or_iff_or !and.comm !and.comm) theorem or.left_distrib (a b c : Prop) : a ∨ (b ∧ c) ↔ (a ∨ b) ∧ (a ∨ c) := iff.intro (or.rec (λH, and.intro (or.inl H) (or.inl H)) (and.imp or.inr or.inr)) (and.rec (or.rec (imp.syl imp.intro or.inl) (imp.syl or.imp_right and.intro))) theorem or.right_distrib (a b c : Prop) : (a ∧ b) ∨ c ↔ (a ∨ c) ∧ (b ∨ c) := iff.trans (iff.trans !or.comm !or.left_distrib) (and_iff_and !or.comm !or.comm) /- iff -/ definition iff.def : (a ↔ b) = ((a → b) ∧ (b → a)) := rfl theorem iff_true [simp] (a : Prop) : (a ↔ true) ↔ a := iff.intro (assume H, iff.mpr H trivial) iff_true_intro theorem true_iff [simp] (a : Prop) : (true ↔ a) ↔ a := iff.trans iff.comm !iff_true theorem iff_false [simp] (a : Prop) : (a ↔ false) ↔ ¬ a := iff.intro and.left iff_false_intro theorem false_iff [simp] (a : Prop) : (false ↔ a) ↔ ¬ a := iff.trans iff.comm !iff_false theorem iff_self [simp] (a : Prop) : (a ↔ a) ↔ true := iff_true_intro iff.rfl theorem forall_imp_forall {A : Type} {P Q : A → Prop} (H : ∀a, (P a → Q a)) (p : ∀a, P a) (a : A) : Q a := (H a) (p a) theorem forall_iff_forall {A : Type} {P Q : A → Prop} (H : ∀a, (P a ↔ Q a)) : (∀a, P a) ↔ ∀a, Q a := iff.intro (λp a, iff.mp (H a) (p a)) (λq a, iff.mpr (H a) (q a)) theorem exists_imp_exists {A : Type} {P Q : A → Prop} (H : ∀a, (P a → Q a)) (p : ∃a, P a) : ∃a, Q a := exists.elim p (λa Hp, exists.intro a (H a Hp)) theorem exists_iff_exists {A : Type} {P Q : A → Prop} (H : ∀a, (P a ↔ Q a)) : (∃a, P a) ↔ ∃a, Q a := iff.intro (exists_imp_exists (λa, iff.mp (H a))) (exists_imp_exists (λa, iff.mpr (H a))) theorem imp_iff {P : Prop} (Q : Prop) (p : P) : (P → Q) ↔ Q := iff.intro (λf, f p) imp.intro theorem iff_iff_iff (H1 : a ↔ c) (H2 : b ↔ d) : (a ↔ b) ↔ (c ↔ d) := and_iff_and (imp_iff_imp H1 H2) (imp_iff_imp H2 H1) /- if-then-else -/ section open eq.ops variables {A : Type} {c₁ c₂ : Prop} definition if_true [simp] (t e : A) : (if true then t else e) = t := if_pos trivial definition if_false [simp] (t e : A) : (if false then t else e) = e := if_neg not_false end /- congruences -/ theorem congr_not [congr] {a b : Prop} (H : a ↔ b) : ¬a ↔ ¬b := not_iff_not H section variables {a₁ b₁ a₂ b₂ : Prop} variables (H₁ : a₁ ↔ b₁) (H₂ : a₂ ↔ b₂) theorem congr_and [congr] : a₁ ∧ a₂ ↔ b₁ ∧ b₂ := and_iff_and H₁ H₂ theorem congr_or [congr] : a₁ ∨ a₂ ↔ b₁ ∨ b₂ := or_iff_or H₁ H₂ theorem congr_imp [congr] : (a₁ → a₂) ↔ (b₁ → b₂) := imp_iff_imp H₁ H₂ theorem congr_iff [congr] : (a₁ ↔ a₂) ↔ (b₁ ↔ b₂) := iff_iff_iff H₁ H₂ end