simplification rules for iff #2, ?M_1 - ?M_2 ≤ ?M_1 ↦ true #1, 0 ≤ ?M_1 ↦ true #1, succ ?M_1 ≤ ?M_1 ↦ false #1, pred ?M_1 ≤ ?M_1 ↦ true #1, ?M_1 ≤ succ ?M_1 ↦ true #2, ?M_1 - ?M_2 < succ ?M_1 ↦ true #1, ?M_1 < 0 ↦ false #1, ?M_1 < succ ?M_1 ↦ true #1, ?M_1 < ?M_1 ↦ false #1, 0 < succ ?M_1 ↦ true simplification rules for eq #1, g ?M_1 ↦ f ?M_1 + 1 #2, g ?M_1 ↦ 1 #2, f ?M_1 ↦ 0 #4, ite ?M_1 ?M_4 ?M_4 ↦ ?M_4 #1, 0 - ?M_1 ↦ 0 #2, succ ?M_1 - succ ?M_2 ↦ ?M_1 - ?M_2