/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Declaration of the interval -/ import .susp types.eq types.prod cubical.square open eq susp unit equiv is_trunc nat prod pointed definition interval : Type₀ := susp unit namespace interval definition zero : interval := north definition one : interval := south definition seg : zero = one := merid star protected definition rec {P : interval → Type} (P0 : P zero) (P1 : P one) (Ps : P0 =[seg] P1) (x : interval) : P x := begin fapply susp.rec_on x, { exact P0}, { exact P1}, { intro x, cases x, exact Ps} end protected definition rec_on [reducible] {P : interval → Type} (x : interval) (P0 : P zero) (P1 : P one) (Ps : P0 =[seg] P1) : P x := interval.rec P0 P1 Ps x theorem rec_seg {P : interval → Type} (P0 : P zero) (P1 : P one) (Ps : P0 =[seg] P1) : apd (interval.rec P0 P1 Ps) seg = Ps := !rec_merid protected definition elim {P : Type} (P0 P1 : P) (Ps : P0 = P1) (x : interval) : P := interval.rec P0 P1 (pathover_of_eq _ Ps) x protected definition elim_on [reducible] {P : Type} (x : interval) (P0 P1 : P) (Ps : P0 = P1) : P := interval.elim P0 P1 Ps x theorem elim_seg {P : Type} (P0 P1 : P) (Ps : P0 = P1) : ap (interval.elim P0 P1 Ps) seg = Ps := begin apply inj_inv !(pathover_constant seg), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑interval.elim,rec_seg], end protected definition elim_type (P0 P1 : Type) (Ps : P0 ≃ P1) (x : interval) : Type := interval.elim P0 P1 (ua Ps) x protected definition elim_type_on [reducible] (x : interval) (P0 P1 : Type) (Ps : P0 ≃ P1) : Type := interval.elim_type P0 P1 Ps x theorem elim_type_seg (P0 P1 : Type) (Ps : P0 ≃ P1) : transport (interval.elim_type P0 P1 Ps) seg = Ps := by rewrite [tr_eq_cast_ap_fn,↑interval.elim_type,elim_seg];apply cast_ua_fn definition is_contr_interval [instance] [priority 900] : is_contr interval := is_contr.mk zero (λx, interval.rec_on x idp seg !eq_pathover_r_idp) definition naive_funext_of_interval : naive_funext := λA P f g p, ap (λ(i : interval) (x : A), interval.elim_on i (f x) (g x) (p x)) seg definition funext_of_interval : funext := funext_from_naive_funext naive_funext_of_interval end interval open interval definition cube : ℕ → Type₀ | cube 0 := unit | cube (succ n) := cube n × interval abbreviation square := cube (succ (succ nat.zero)) definition cube_one_equiv_interval : cube 1 ≃ interval := !prod_comm_equiv ⬝e !prod_unit_equiv definition prod_square {A B : Type} {a a' : A} {b b' : B} (p : a = a') (q : b = b') : square (pair_eq p idp) (pair_eq p idp) (pair_eq idp q) (pair_eq idp q) := by cases p; cases q; exact ids namespace square definition tl : square := (star, zero, zero) definition tr : square := (star, one, zero) definition bl : square := (star, zero, one ) definition br : square := (star, one, one ) -- s stands for "square" in the following definitions definition st : tl = tr := pair_eq (pair_eq idp seg) idp definition sb : bl = br := pair_eq (pair_eq idp seg) idp definition sl : tl = bl := pair_eq idp seg definition sr : tr = br := pair_eq idp seg definition sfill : square st sb sl sr := !prod_square definition fill : st ⬝ sr = sl ⬝ sb := !square_equiv_eq sfill end square