/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad Multiplicity and prime factors. We have: mult p n := the greatest power of p dividing n if p > 1 and n > 0, and 0 otherwise. prime_factors n := the finite set of prime factors of n, assuming n > 0 -/ import data.nat data.finset .primes open eq.ops finset well_founded decidable nat.finset open algebra namespace nat -- TODO: this should be proved more generally in ring_bigops theorem Prod_pos {A : Type} [deceqA : decidable_eq A] {s : finset A} {f : A → ℕ} (fpos : ∀ n, n ∈ s → f n > 0) : (∏ n ∈ s, f n) > 0 := begin induction s with a s anins ih, {rewrite Prod_empty; exact zero_lt_one}, rewrite [!Prod_insert_of_not_mem anins], exact (mul_pos (fpos a (mem_insert a _)) (ih (forall_of_forall_insert fpos))) end /- multiplicity -/ theorem mult_rec_decreasing {p n : ℕ} (Hp : p > 1) (Hn : n > 0) : n div p < n := have H' : n < n * p, by rewrite [-mul_one n at {1}]; apply mul_lt_mul_of_pos_left Hp Hn, nat.div_lt_of_lt_mul H' private definition mult.F (p : ℕ) (n : ℕ) (f: Π {m : ℕ}, m < n → ℕ) : ℕ := if H : (p > 1 ∧ n > 0) ∧ p ∣ n then succ (f (mult_rec_decreasing (and.left (and.left H)) (and.right (and.left H)))) else 0 definition mult (p n : ℕ) : ℕ := fix (mult.F p) n theorem mult_rec {p n : ℕ} (pgt1 : p > 1) (ngt0 : n > 0) (pdivn : p ∣ n) : mult p n = succ (mult p (n div p)) := have (p > 1 ∧ n > 0) ∧ p ∣ n, from and.intro (and.intro pgt1 ngt0) pdivn, eq.trans (well_founded.fix_eq (mult.F p) n) (dif_pos this) private theorem mult_base {p n : ℕ} (H : ¬ ((p > 1 ∧ n > 0) ∧ p ∣ n)) : mult p n = 0 := eq.trans (well_founded.fix_eq (mult.F p) n) (dif_neg H) theorem mult_zero_right (p : ℕ) : mult p 0 = 0 := mult_base (assume H, !lt.irrefl (and.right (and.left H))) theorem mult_eq_zero_of_not_dvd {p n : ℕ} (H : ¬ p ∣ n) : mult p n = 0 := mult_base (assume H', H (and.right H')) theorem mult_eq_zero_of_le_one {p : ℕ} (n : ℕ) (H : p ≤ 1) : mult p n = 0 := mult_base (assume H', not_lt_of_ge H (and.left (and.left H'))) theorem mult_zero_left (n : ℕ) : mult 0 n = 0 := mult_eq_zero_of_le_one n !dec_trivial theorem mult_one_left (n : ℕ) : mult 1 n = 0 := mult_eq_zero_of_le_one n !dec_trivial theorem mult_pos_of_dvd {p n : ℕ} (pgt1 : p > 1) (npos : n > 0) (pdvdn : p ∣ n) : mult p n > 0 := by rewrite (mult_rec pgt1 npos pdvdn); apply succ_pos theorem not_dvd_of_mult_eq_zero {p n : ℕ} (pgt1 : p > 1) (npos : n > 0) (H : mult p n = 0) : ¬ p ∣ n := suppose p ∣ n, ne_of_gt (mult_pos_of_dvd pgt1 npos this) H theorem dvd_of_mult_pos {p n : ℕ} (H : mult p n > 0) : p ∣ n := by_contradiction (suppose ¬ p ∣ n, ne_of_gt H (mult_eq_zero_of_not_dvd this)) /- properties of mult -/ theorem mult_eq_zero_of_prime_of_ne {p q : ℕ} (primep : prime p) (primeq : prime q) (pneq : p ≠ q) : mult p q = 0 := mult_eq_zero_of_not_dvd (not_dvd_of_prime_of_coprime primep (coprime_primes primep primeq pneq)) theorem pow_mult_dvd (p n : ℕ) : p^(mult p n) ∣ n := begin induction n using nat.strong_induction_on with [n, ih], cases eq_zero_or_pos n with [nz, npos], {rewrite nz, apply dvd_zero}, cases le_or_gt p 1 with [ple1, pgt1], {rewrite [!mult_eq_zero_of_le_one ple1, pow_zero], apply one_dvd}, cases (or.swap (em (p ∣ n))) with [pndvdn, pdvdn], {rewrite [mult_eq_zero_of_not_dvd pndvdn, pow_zero], apply one_dvd}, show p ^ (mult p n) ∣ n, from dvd.elim pdvdn (take n', suppose n = p * n', have p > 0, from lt.trans zero_lt_one pgt1, assert n div p = n', from !nat.div_eq_of_eq_mul_right this `n = p * n'`, assert n' < n, by rewrite -this; apply mult_rec_decreasing pgt1 npos, begin rewrite [mult_rec pgt1 npos pdvdn, `n div p = n'`, pow_succ], subst n, apply mul_dvd_mul !dvd.refl, apply ih _ this end) end theorem mult_one_right (p : ℕ) : mult p 1 = 0:= assert H : p^(mult p 1) = 1, from eq_one_of_dvd_one !pow_mult_dvd, or.elim (le_or_gt p 1) (suppose p ≤ 1, by rewrite [!mult_eq_zero_of_le_one this]) (suppose p > 1, by_contradiction (suppose mult p 1 ≠ 0, have mult p 1 > 0, from pos_of_ne_zero this, assert p^(mult p 1) > 1, from pow_gt_one `p > 1` this, show false, by rewrite H at this; apply !lt.irrefl this)) private theorem mult_pow_mul {p n : ℕ} (i : ℕ) (pgt1 : p > 1) (npos : n > 0) : mult p (p^i * n) = i + mult p n := begin induction i with [i, ih], {krewrite [pow_zero, one_mul, zero_add]}, have p > 0, from lt.trans zero_lt_one pgt1, have psin_pos : p^(succ i) * n > 0, from mul_pos (!pow_pos_of_pos this) npos, have p ∣ p^(succ i) * n, by rewrite [pow_succ, mul.assoc]; apply dvd_mul_right, rewrite [mult_rec pgt1 psin_pos this, pow_succ', mul.right_comm, !nat.mul_div_cancel `p > 0`, ih], rewrite [add.comm i, add.comm (succ i)] end theorem mult_pow_self {p : ℕ} (i : ℕ) (pgt1 : p > 1) : mult p (p^i) = i := by rewrite [-(mul_one (p^i)), mult_pow_mul i pgt1 zero_lt_one, mult_one_right] theorem mult_self {p : ℕ} (pgt1 : p > 1) : mult p p = 1 := by rewrite [-pow_one p at {2}]; apply mult_pow_self 1 pgt1 theorem le_mult {p i n : ℕ} (pgt1 : p > 1) (npos : n > 0) (pidvd : p^i ∣ n) : i ≤ mult p n := dvd.elim pidvd (take m, suppose n = p^i * m, assert m > 0, from pos_of_mul_pos_left (this ▸ npos), by subst n; rewrite [mult_pow_mul i pgt1 this]; apply le_add_right) theorem not_dvd_div_pow_mult {p n : ℕ} (pgt1 : p > 1) (npos : n > 0) : ¬ p ∣ n div p^(mult p n) := assume pdvd : p ∣ n div p^(mult p n), obtain m (H : n div p^(mult p n) = p * m), from exists_eq_mul_right_of_dvd pdvd, assert n = p^(succ (mult p n)) * m, from calc n = p^mult p n * (n div p^mult p n) : by rewrite (nat.mul_div_cancel' !pow_mult_dvd) ... = p^(succ (mult p n)) * m : by rewrite [H, pow_succ', mul.assoc], have p^(succ (mult p n)) ∣ n, by rewrite this at {2}; apply dvd_mul_right, have succ (mult p n) ≤ mult p n, from le_mult pgt1 npos this, show false, from !not_succ_le_self this theorem mult_mul {p m n : ℕ} (primep : prime p) (mpos : m > 0) (npos : n > 0) : mult p (m * n) = mult p m + mult p n := let m' := m div p^mult p m, n' := n div p^mult p n in assert p > 1, from gt_one_of_prime primep, assert meq : m = p^mult p m * m', by rewrite (nat.mul_div_cancel' !pow_mult_dvd), assert neq : n = p^mult p n * n', by rewrite (nat.mul_div_cancel' !pow_mult_dvd), have m'pos : m' > 0, from pos_of_mul_pos_left (meq ▸ mpos), have n'pos : n' > 0, from pos_of_mul_pos_left (neq ▸ npos), have npdvdm' : ¬ p ∣ m', from !not_dvd_div_pow_mult `p > 1` mpos, have npdvdn' : ¬ p ∣ n', from !not_dvd_div_pow_mult `p > 1` npos, assert npdvdm'n' : ¬ p ∣ m' * n', from not_dvd_mul_of_prime primep npdvdm' npdvdn', assert m'n'pos : m' * n' > 0, from mul_pos m'pos n'pos, assert multm'n' : mult p (m' * n') = 0, from mult_eq_zero_of_not_dvd npdvdm'n', calc mult p (m * n) = mult p (p^(mult p m + mult p n) * (m' * n')) : by rewrite [pow_add, mul.right_comm, -mul.assoc, -meq, mul.assoc, mul.comm (n div _), -neq] ... = mult p m + mult p n : by rewrite [!mult_pow_mul `p > 1` m'n'pos, multm'n'] theorem mult_pow {p m : ℕ} (n : ℕ) (mpos : m > 0) (primep : prime p) : mult p (m^n) = n * mult p m := begin induction n with n ih, krewrite [pow_zero, mult_one_right, zero_mul], rewrite [pow_succ, mult_mul primep mpos (!pow_pos_of_pos mpos), ih, succ_mul, add.comm] end theorem dvd_of_forall_prime_mult_le {m n : ℕ} (mpos : m > 0) (H : ∀ {p}, prime p → mult p m ≤ mult p n) : m ∣ n := begin revert H, revert n, induction m using nat.strong_induction_on with [m, ih], cases (decidable.em (m = 1)) with [meq, mneq], {intros, rewrite meq, apply one_dvd}, have mgt1 : m > 1, from lt_of_le_of_ne (succ_le_of_lt mpos) (ne.symm mneq), have mge2 : m ≥ 2, from succ_le_of_lt mgt1, have hpd : ∃ p, prime p ∧ p ∣ m, from exists_prime_and_dvd mge2, cases hpd with [p, H1], cases H1 with [primep, pdvdm], intro n, cases (eq_zero_or_pos n) with [nz, npos], {intros; rewrite nz; apply dvd_zero}, assume H : ∀ {p : ℕ}, prime p → mult p m ≤ mult p n, obtain m' (meq : m = p * m'), from exists_eq_mul_right_of_dvd pdvdm, assert pgt1 : p > 1, from gt_one_of_prime primep, assert m'pos : m' > 0, from pos_of_ne_zero (assume m'z, by revert mpos; rewrite [meq, m'z, mul_zero]; apply not_lt_zero), have m'ltm : m' < m, by rewrite [meq, -one_mul m' at {1}]; apply mul_lt_mul_of_lt_of_le m'pos pgt1 !le.refl, have multpm : mult p m ≥ 1, from le_mult pgt1 mpos (by rewrite pow_one; apply pdvdm), have multpn : mult p n ≥ 1, from le.trans multpm (H primep), obtain n' (neq : n = p * n'), from exists_eq_mul_right_of_dvd (dvd_of_mult_pos (lt_of_succ_le multpn)), assert n'pos : n' > 0, from pos_of_ne_zero (assume n'z, by revert npos; rewrite [neq, n'z, mul_zero]; apply not_lt_zero), have ∀q, prime q → mult q m' ≤ mult q n', from (take q, assume primeq : prime q, have multqm : mult q m = mult q p + mult q m', by rewrite [meq, mult_mul primeq (pos_of_prime primep) m'pos], have multqn : mult q n = mult q p + mult q n', by rewrite [neq, mult_mul primeq (pos_of_prime primep) n'pos], show mult q m' ≤ mult q n', from le_of_add_le_add_left (multqm ▸ multqn ▸ H primeq)), assert m'dvdn' : m' ∣ n', from ih m' m'ltm m'pos n' this, show m ∣ n, by rewrite [meq, neq]; apply mul_dvd_mul !dvd.refl m'dvdn' end theorem eq_of_forall_prime_mult_eq {m n : ℕ} (mpos : m > 0) (npos : n > 0) (H : ∀ p, prime p → mult p m = mult p n) : m = n := dvd.antisymm (dvd_of_forall_prime_mult_le mpos (take p, assume primep, H _ primep ▸ !le.refl)) (dvd_of_forall_prime_mult_le npos (take p, assume primep, H _ primep ▸ !le.refl)) /- prime factors -/ definition prime_factors (n : ℕ) : finset ℕ := { p ∈ upto (succ n) | prime p ∧ p ∣ n } theorem prime_of_mem_prime_factors {p n : ℕ} (H : p ∈ prime_factors n) : prime p := and.left (of_mem_sep H) theorem dvd_of_mem_prime_factors {p n : ℕ} (H : p ∈ prime_factors n) : p ∣ n := and.right (of_mem_sep H) theorem mem_prime_factors {p n : ℕ} (npos : n > 0) (primep : prime p) (pdvdn : p ∣ n) : p ∈ prime_factors n := have plen : p ≤ n, from le_of_dvd npos pdvdn, mem_sep_of_mem (mem_upto_of_lt (lt_succ_of_le plen)) (and.intro primep pdvdn) /- prime factorization -/ theorem mult_pow_eq_zero_of_prime_of_ne {p q : ℕ} (primep : prime p) (primeq : prime q) (pneq : p ≠ q) (i : ℕ) : mult p (q^i) = 0 := begin induction i with i ih, {rewrite [pow_zero, mult_one_right]}, have qpos : q > 0, from pos_of_prime primeq, have qipos : q^i > 0, from !pow_pos_of_pos qpos, rewrite [pow_succ', mult_mul primep qipos qpos, ih, mult_eq_zero_of_prime_of_ne primep primeq pneq] end theorem mult_prod_pow_of_not_mem {p : ℕ} (primep : prime p) {s : finset ℕ} (sprimes : ∀ p, p ∈ s → prime p) (f : ℕ → ℕ) (pns : p ∉ s) : mult p (∏ q ∈ s, q^(f q)) = 0 := begin induction s with a s anins ih, {rewrite [Prod_empty, mult_one_right]}, have pnea : p ≠ a, from assume peqa, by rewrite peqa at pns; exact pns !mem_insert, have primea : prime a, from sprimes a !mem_insert, have afapos : a ^ f a > 0, from !pow_pos_of_pos (pos_of_prime primea), have prodpos : (∏ q ∈ s, q ^ f q) > 0, from Prod_pos (take q, assume qs, !pow_pos_of_pos (pos_of_prime (forall_of_forall_insert sprimes q qs))), rewrite [!Prod_insert_of_not_mem anins, mult_mul primep afapos prodpos], rewrite (mult_pow_eq_zero_of_prime_of_ne primep primea pnea), rewrite (ih (forall_of_forall_insert sprimes) (λ H, pns (!mem_insert_of_mem H))) end theorem mult_prod_pow_of_mem {p : ℕ} (primep : prime p) {s : finset ℕ} (sprimes : ∀ p, p ∈ s → prime p) (f : ℕ → ℕ) (ps : p ∈ s) : mult p (∏ q ∈ s, q^(f q)) = f p := begin induction s with a s anins ih, {exact absurd ps !not_mem_empty}, have primea : prime a, from sprimes a !mem_insert, have afapos : a ^ f a > 0, from !pow_pos_of_pos (pos_of_prime primea), have prodpos : (∏ q ∈ s, q ^ f q) > 0, from Prod_pos (take q, assume qs, !pow_pos_of_pos (pos_of_prime (forall_of_forall_insert sprimes q qs))), rewrite [!Prod_insert_of_not_mem anins, mult_mul primep afapos prodpos], cases eq_or_mem_of_mem_insert ps with peqa pins, {rewrite [peqa, !mult_pow_self (gt_one_of_prime primea)], rewrite [mult_prod_pow_of_not_mem primea (forall_of_forall_insert sprimes) _ anins]}, have pnea : p ≠ a, from by intro peqa; rewrite peqa at pins; exact anins pins, rewrite [mult_pow_eq_zero_of_prime_of_ne primep primea pnea, zero_add], exact (ih (forall_of_forall_insert sprimes) pins) end theorem eq_prime_factorization {n : ℕ} (npos : n > 0) : n = (∏ p ∈ prime_factors n, p^(mult p n)) := let nprod := ∏ p ∈ prime_factors n, p^(mult p n) in assert primefactors : ∀ p, p ∈ prime_factors n → prime p, from take p, @prime_of_mem_prime_factors p n, have prodpos : (∏ q ∈ prime_factors n, q^(mult q n)) > 0, from Prod_pos (take q, assume qpf, !pow_pos_of_pos (pos_of_prime (prime_of_mem_prime_factors qpf))), eq_of_forall_prime_mult_eq npos prodpos (take p, assume primep, decidable.by_cases (assume pprimefactors : p ∈ prime_factors n, eq.symm (mult_prod_pow_of_mem primep primefactors (λ p, mult p n) pprimefactors)) (assume pnprimefactors : p ∉ prime_factors n, have ¬ p ∣ n, from assume H, pnprimefactors (mem_prime_factors npos primep H), assert mult p n = 0, from mult_eq_zero_of_not_dvd this, by rewrite [this, mult_prod_pow_of_not_mem primep primefactors _ pnprimefactors])) end nat