/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.precategory.adjoint Authors: Floris van Doorn -/ import algebra.category.constructions .constructions types.function arity open category functor nat_trans eq is_trunc iso equiv prod trunc function namespace category variables {C D : Precategory} {F : C ⇒ D} -- do we want to have a structure "is_adjoint" and define -- structure is_left_adjoint (F : C ⇒ D) := -- (right_adjoint : D ⇒ C) -- G -- (is_adjoint : adjoint F right_adjoint) structure is_left_adjoint [class] (F : C ⇒ D) := (G : D ⇒ C) (η : functor.id ⟹ G ∘f F) (ε : F ∘f G ⟹ functor.id) (H : Π(c : C), (ε (F c)) ∘ (F (η c)) = ID (F c)) (K : Π(d : D), (G (ε d)) ∘ (η (G d)) = ID (G d)) abbreviation right_adjoint := @is_left_adjoint.G abbreviation unit := @is_left_adjoint.η abbreviation counit := @is_left_adjoint.ε -- structure is_left_adjoint [class] (F : C ⇒ D) := -- (right_adjoint : D ⇒ C) -- G -- (unit : functor.id ⟹ right_adjoint ∘f F) -- η -- (counit : F ∘f right_adjoint ⟹ functor.id) -- ε -- (H : Π(c : C), (counit (F c)) ∘ (F (unit c)) = ID (F c)) -- (K : Π(d : D), (right_adjoint (counit d)) ∘ (unit (right_adjoint d)) = ID (right_adjoint d)) structure is_equivalence [class] (F : C ⇒ D) extends is_left_adjoint F := mk' :: (is_iso_unit : is_iso η) (is_iso_counit : is_iso ε) structure equivalence (C D : Precategory) := (to_functor : C ⇒ D) (struct : is_equivalence to_functor) --TODO: review and change --TODO: make some or all of these structures? definition faithful (F : C ⇒ D) := Π⦃c c' : C⦄ (f f' : c ⟶ c'), F f = F f' → f = f' definition full (F : C ⇒ D) := Π⦃c c' : C⦄ (g : F c ⟶ F c'), ∃(f : c ⟶ c'), F f = g definition fully_faithful [reducible] (F : C ⇒ D) := Π⦃c c' : C⦄, is_equiv (@(to_fun_hom F) c c') definition split_essentially_surjective (F : C ⇒ D) := Π⦃d : D⦄, Σ(c : C), F c ≅ d definition essentially_surjective (F : C ⇒ D) := Π⦃d : D⦄, ∃(c : C), F c ≅ d definition is_weak_equivalence (F : C ⇒ D) := fully_faithful F × essentially_surjective F definition is_isomorphism (F : C ⇒ D) := fully_faithful F × is_equiv (to_fun_ob F) structure isomorphism (C D : Precategory) := (to_functor : C ⇒ D) (struct : is_isomorphism to_functor) -- infix `⊣`:55 := adjoint infix `⋍`:25 := equivalence -- \backsimeq or \equiv infix `≌`:25 := isomorphism -- \backcong or \iso definition is_hprop_is_left_adjoint {C : Category} {D : Precategory} (F : C ⇒ D) : is_hprop (is_left_adjoint F) := begin apply is_hprop.mk, intro G G', cases G with G η ε H K, cases G' with G' η' ε' H' K', fapply (apd011111 is_left_adjoint.mk), { fapply functor_eq, { intro d, apply eq_of_iso, fapply iso.MK, { exact (G' (ε d) ∘ η' (G d))}, { exact (G (ε' d) ∘ η (G' d))}, { apply sorry /-rewrite [assoc, -{((G (ε' d)) ∘ (η (G' d))) ∘ (G' (ε d))}(assoc)],-/ -- apply concat, apply (ap (λc, c ∘ η' _)), rewrite -assoc, apply idp }, --/-rewrite [-nat_trans.assoc]-/apply sorry ---assoc (G (ε' d)) (η (G' d)) (G' (ε d)) { apply sorry}}, { apply sorry}, }, { apply sorry}, { apply sorry}, { apply is_hprop.elim}, { apply is_hprop.elim}, end definition is_equivalence.mk (F : C ⇒ D) (G : D ⇒ C) (η : G ∘f F ≅ functor.id) (ε : F ∘f G ≅ functor.id) : is_equivalence F := sorry definition full_of_fully_faithful (H : fully_faithful F) : full F := sorry -- λc c' g, exists.intro ((@(to_fun_hom F) c c')⁻¹ g) _ definition faithful_of_fully_faithful (H : fully_faithful F) : faithful F := λc c' f f' p, is_injective_of_is_embedding p definition fully_faithful_of_full_of_faithful (H : faithful F) (K : full F) : fully_faithful F := sorry definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) := sorry definition is_equivalence_equiv (F : C ⇒ D) : is_equivalence F ≃ (fully_faithful F × split_essentially_surjective F) := sorry definition is_hprop_is_weak_equivalence (F : C ⇒ D) : is_hprop (is_weak_equivalence F) := sorry definition is_hprop_is_equivalence {C D : Category} (F : C ⇒ D) : is_hprop (is_equivalence F) := sorry definition is_equivalence_equiv_is_weak_equivalence {C D : Category} (F : C ⇒ D) : is_equivalence F ≃ is_weak_equivalence F := sorry definition is_hprop_is_isomorphism (F : C ⇒ D) : is_hprop (is_isomorphism F) := sorry definition is_isomorphism_equiv1 (F : C ⇒ D) : is_equivalence F ≃ Σ(G : D ⇒ C) (η : functor.id = G ∘f F) (ε : F ∘f G = functor.id), sorry ▸ ap (λ(H : C ⇒ C), F ∘f H) η = ap (λ(H : D ⇒ D), H ∘f F) ε⁻¹ := sorry definition is_isomorphism_equiv2 (F : C ⇒ D) : is_equivalence F ≃ ∃(G : D ⇒ C), functor.id = G ∘f F × F ∘f G = functor.id := sorry definition is_equivalence_of_isomorphism (H : is_isomorphism F) : is_equivalence F := sorry definition is_isomorphism_of_is_equivalence {C D : Category} {F : C ⇒ D} (H : is_equivalence F) : is_isomorphism F := sorry definition isomorphism_of_eq {C D : Precategory} (p : C = D) : C ≌ D := sorry definition is_equiv_isomorphism_of_eq (C D : Precategory) : is_equiv (@isomorphism_of_eq C D) := sorry definition equivalence_of_eq {C D : Precategory} (p : C = D) : C ⋍ D := sorry definition is_equiv_equivalence_of_eq (C D : Category) : is_equiv (@equivalence_of_eq C D) := sorry end category