-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn import logic ..prod algebra.relation import tools.fake_simplifier open prod eq.ops open fake_simplifier namespace quotient -- auxliary facts about products -- ----------------------------- -- add_rewrite flip_pr1 flip_pr2 flip_pair -- add_rewrite map_pair_pr1 map_pair_pr2 map_pair_pair -- add_rewrite map_pair2_pr1 map_pair2_pr2 map_pair2_pair theorem map_pair2_comm {A B : Type} {f : A → A → B} (Hcomm : ∀a b : A, f a b = f b a) (v w : A × A) : map_pair2 f v w = map_pair2 f w v := have Hx : pr1 (map_pair2 f v w) = pr1 (map_pair2 f w v), from calc pr1 (map_pair2 f v w) = f (pr1 v) (pr1 w) : map_pair2_pr1 f v w ... = f (pr1 w) (pr1 v) : Hcomm _ _ ... = pr1 (map_pair2 f w v) : (map_pair2_pr1 f w v)⁻¹, have Hy : pr2 (map_pair2 f v w) = pr2 (map_pair2 f w v), from calc pr2 (map_pair2 f v w) = f (pr2 v) (pr2 w) : map_pair2_pr2 f v w ... = f (pr2 w) (pr2 v) : Hcomm _ _ ... = pr2 (map_pair2 f w v) : (map_pair2_pr2 f w v)⁻¹, pair_eq Hx Hy theorem map_pair2_assoc {A : Type} {f : A → A → A} (Hassoc : ∀a b c : A, f (f a b) c = f a (f b c)) (u v w : A × A) : map_pair2 f (map_pair2 f u v) w = map_pair2 f u (map_pair2 f v w) := have Hx : pr1 (map_pair2 f (map_pair2 f u v) w) = pr1 (map_pair2 f u (map_pair2 f v w)), from calc pr1 (map_pair2 f (map_pair2 f u v) w) = f (pr1 (map_pair2 f u v)) (pr1 w) : map_pair2_pr1 f _ _ ... = f (f (pr1 u) (pr1 v)) (pr1 w) : {map_pair2_pr1 f _ _} ... = f (pr1 u) (f (pr1 v) (pr1 w)) : Hassoc (pr1 u) (pr1 v) (pr1 w) ... = f (pr1 u) (pr1 (map_pair2 f v w)) : {(map_pair2_pr1 f _ _)⁻¹} ... = pr1 (map_pair2 f u (map_pair2 f v w)) : (map_pair2_pr1 f _ _)⁻¹, have Hy : pr2 (map_pair2 f (map_pair2 f u v) w) = pr2 (map_pair2 f u (map_pair2 f v w)), from calc pr2 (map_pair2 f (map_pair2 f u v) w) = f (pr2 (map_pair2 f u v)) (pr2 w) : map_pair2_pr2 f _ _ ... = f (f (pr2 u) (pr2 v)) (pr2 w) : {map_pair2_pr2 f _ _} ... = f (pr2 u) (f (pr2 v) (pr2 w)) : Hassoc (pr2 u) (pr2 v) (pr2 w) ... = f (pr2 u) (pr2 (map_pair2 f v w)) : {map_pair2_pr2 f _ _} ... = pr2 (map_pair2 f u (map_pair2 f v w)) : (map_pair2_pr2 f _ _)⁻¹, pair_eq Hx Hy theorem map_pair2_id_right {A B : Type} {f : A → B → A} {e : B} (Hid : ∀a : A, f a e = a) (v : A × A) : map_pair2 f v (pair e e) = v := have Hx : pr1 (map_pair2 f v (pair e e)) = pr1 v, from (calc pr1 (map_pair2 f v (pair e e)) = f (pr1 v) (pr1 (pair e e)) : by simp ... = f (pr1 v) e : by simp ... = pr1 v : Hid (pr1 v)), have Hy : pr2 (map_pair2 f v (pair e e)) = pr2 v, from (calc pr2 (map_pair2 f v (pair e e)) = f (pr2 v) (pr2 (pair e e)) : by simp ... = f (pr2 v) e : by simp ... = pr2 v : Hid (pr2 v)), prod.equal Hx Hy theorem map_pair2_id_left {A B : Type} {f : B → A → A} {e : B} (Hid : ∀a : A, f e a = a) (v : A × A) : map_pair2 f (pair e e) v = v := have Hx : pr1 (map_pair2 f (pair e e) v) = pr1 v, from calc pr1 (map_pair2 f (pair e e) v) = f (pr1 (pair e e)) (pr1 v) : by simp ... = f e (pr1 v) : by simp ... = pr1 v : Hid (pr1 v), have Hy : pr2 (map_pair2 f (pair e e) v) = pr2 v, from calc pr2 (map_pair2 f (pair e e) v) = f (pr2 (pair e e)) (pr2 v) : by simp ... = f e (pr2 v) : by simp ... = pr2 v : Hid (pr2 v), prod.equal Hx Hy end quotient