-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jeremy Avigad, Jakob von Raumer -- Ported from Coq HoTT import .equiv .funext open path function namespace IsEquiv --If pre- or post-composing with a function is always an equivalence, --then that function is also an equivalence. It's convenient to know --that we only need to assume the equivalence when the other type is --the domain or the codomain. context parameters {A B : Type} (f : A → B) definition precomp (C : Type) (h : B → C) : A → C := h ∘ f definition inv_precomp (C D : Type) (Ceq : IsEquiv (precomp C)) (Deq : IsEquiv (precomp D)) (k : C → D) (h : A → C) : k ∘ (inv (precomp C)) h ≈ (inv (precomp D)) (k ∘ h) := let invD := inv (precomp D) in let invC := inv (precomp C) in have eq1 : invD (k ∘ h) ≈ k ∘ (invC h), from calc invD (k ∘ h) ≈ invD (k ∘ (precomp C (invC h))) : retr (precomp C) h ... ≈ k ∘ (invC h) : !sect, eq1⁻¹ definition isequiv_precompose (Aeq : IsEquiv (precomp A)) (Beq : IsEquiv (precomp B)) : (IsEquiv f) := let invA := inv (precomp A) in let invB := inv (precomp B) in let sect' : Sect (invA id) f := (λx, calc f (invA id x) ≈ (f ∘ invA id) x : idp ... ≈ invB (f ∘ id) x : apD10 (!inv_precomp) ... ≈ invB (precomp B id) x : idp ... ≈ x : apD10 (sect (precomp B) id)) in let retr' : Sect f (invA id) := (λx, calc invA id (f x) ≈ precomp A (invA id) x : idp ... ≈ x : apD10 (retr (precomp A) id)) in adjointify f (invA id) sect' retr' end end IsEquiv