-- Copyright (c) 2014 Jakob von Raumer. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jakob von Raumer -- Ported from Coq HoTT import .precategory.basic .precategory.morphism .group open path function prod sigma truncation morphism nat path_algebra structure foo (A : Type) := (bsp : A) structure groupoid [class] (ob : Type) extends precategory ob := (all_iso : Π ⦃a b : ob⦄ (f : hom a b), @is_iso ob (precategory.mk hom _ _ _ assoc id_left id_right) a b f) namespace groupoid instance [persistent] all_iso --set_option pp.universes true --set_option pp.implicit true universe variable l definition path_groupoid (A : Type.{l}) (H : is_trunc 1 A) : groupoid.{l l} A := have C [visible] : precategory.{l l} A, from precategory.mk (λ a b, a ≈ b) (λ (a b : A), have ish : is_hset (a ≈ b), from succ_is_trunc 0 a b, ish) (λ (a b c : A) (p : b ≈ c) (q : a ≈ b), q ⬝ p) (λ (a : A), idpath a) (λ (a b c d : A) (p : c ≈ d) (q : b ≈ c) (r : a ≈ b), concat_pp_p r q p) (λ (a b : A) (p : a ≈ b), concat_p1 p) (λ (a b : A) (p : a ≈ b), concat_1p p), groupoid.mk (precategory.hom) (@precategory.homH A C) --(λ (a b : A), have ish : is_hset (a ≈ b), from succ_is_trunc 0 a b, ish) (precategory.comp) --(λ (a b c : A) (p : b ≈ c) (q : a ≈ b), q ⬝ p) (precategory.ID) --(λ (a : A), idpath a) (precategory.assoc) --(λ (a b c d : A) (p : c ≈ d) (q : b ≈ c) (r : a ≈ b), concat_pp_p r q p) (precategory.id_left) --(λ (a b : A) (p : a ≈ b), concat_p1 p) (precategory.id_right) --(λ (a b : A) (p : a ≈ b), concat_1p p) (λ (a b : A) (p : @hom A C a b), @is_iso.mk A C a b p (path.inverse p) (have aux : p⁻¹ ⬝ p ≈ idpath b, from concat_Vp p, have aux2 : p⁻¹ ∘ p ≈ idpath b, from aux, have aux3 : p⁻¹ ∘ p ≈ id, from sorry, aux3) (have aux : p ⬝ p⁻¹ ≈ idpath a, from concat_pV p, sorry)) definition group_from_contr {ob : Type} (H : is_contr ob) (G : groupoid ob) : group (hom (center ob) (center ob)) := begin fapply group.mk, intros (f, g), apply (comp f g), apply homH, intros (f, g, h), apply ((assoc f g h)⁻¹), apply (ID (center ob)), intro f, apply id_left, intro f, apply id_right, intro f, exact (morphism.inverse f), intro f, exact (morphism.inverse_compose f), end end groupoid