-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura, Jeremy Avigad import logic.inhabited logic.eq logic.decidable -- data.prod -- ========= open inhabited decidable eq.ops -- The cartesian product. inductive prod (A B : Type) : Type := mk : A → B → prod A B definition pair := @prod.mk namespace prod infixr `×` := prod -- notation for n-ary tuples notation `(` h `,` t:(foldl `,` (e r, prod.mk r e) h) `)` := t section variables {A B : Type} protected theorem destruct {P : A × B → Prop} (p : A × B) (H : ∀a b, P (a, b)) : P p := rec H p definition pr1 (p : prod A B) := rec (λ x y, x) p definition pr2 (p : prod A B) := rec (λ x y, y) p notation `pr₁`:max := pr1 notation `pr₂`:max := pr2 variables (a : A) (b : B) theorem pr1.pair : pr₁ (a, b) = a := rfl theorem pr2.pair : pr₂ (a, b) = b := rfl theorem prod_ext (p : prod A B) : pair (pr₁ p) (pr₂ p) = p := destruct p (λx y, eq.refl (x, y)) variables {a₁ a₂ : A} {b₁ b₂ : B} theorem pair_eq : a₁ = a₂ → b₁ = b₂ → (a₁, b₁) = (a₂, b₂) := assume H1 H2, H1 ▸ H2 ▸ rfl protected theorem equal {p₁ p₂ : prod A B} : pr₁ p₁ = pr₁ p₂ → pr₂ p₁ = pr₂ p₂ → p₁ = p₂ := destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, pair_eq H₁ H₂)) protected definition is_inhabited [instance] : inhabited A → inhabited B → inhabited (prod A B) := take (H₁ : inhabited A) (H₂ : inhabited B), inhabited.destruct H₁ (λa, inhabited.destruct H₂ (λb, inhabited.mk (pair a b))) protected definition has_decidable_eq [instance] : decidable_eq A → decidable_eq B → decidable_eq (A × B) := take (H₁ : decidable_eq A) (H₂ : decidable_eq B) (u v : A × B), have H₃ : u = v ↔ (pr₁ u = pr₁ v) ∧ (pr₂ u = pr₂ v), from iff.intro (assume H, H ▸ and.intro rfl rfl) (assume H, and.elim H (assume H₄ H₅, equal H₄ H₅)), decidable_iff_equiv _ (iff.symm H₃) end end prod