-- Create a HoTT compatible environment. -- That is, -- Type.{0} is predicative -- No proof irrelevance for Type.{0} -- Proof irrelevance for Id types local env = empty_environment({prop_proof_irrel=false, impredicative=false, cls_proof_irrel={"Id"}}) assert(not env:prop_proof_irrel()) assert(not env:impredicative()) assert(env:cls_proof_irrel():head() == name("Id")) assert(env:cls_proof_irrel():tail():is_nil()) local l = mk_param_univ("l") local U_l = mk_sort(l) local A = Const("A") env = add_decl(env, mk_var_decl("Id", {l}, Pi(A, U_l, mk_arrow(A, A, U_l)))) local Set = mk_sort(mk_level_zero()) env = add_decl(env, mk_var_decl("N", Set)) local N = Const("N") env = add_decl(env, mk_var_decl("a", N)) env = add_decl(env, mk_var_decl("b", N)) local a = Const("a") local b = Const("b") local Id_z = Const("Id", {mk_level_zero()}) env = add_decl(env, mk_axiom("H1", Id_z(N, a, b))) env = add_decl(env, mk_axiom("H2", Id_z(N, a, b))) local tc = type_checker(env) -- H1 and H2 are definitionally equal since both have type Id.{0} N a b -- and Id is in env:cls_proof_irrel() assert(tc:is_def_eq(Const("H1"), Const("H2"))) env = add_decl(env, mk_var_decl("Path", {l}, Pi(A, U_l, mk_arrow(A, A, U_l)))) local Path_z = Const("Path", {mk_level_zero()}) env = add_decl(env, mk_axiom("H3", Path_z(N, a, b))) env = add_decl(env, mk_axiom("H4", Path_z(N, a, b))) local tc = type_checker(env) assert(tc:is_def_eq(Const("H1"), Const("H2"))) assert(not tc:is_def_eq(Const("H3"), Const("H4"))) assert(tc:is_def_eq(tc:check(Const("H3")), tc:check(Const("H4")))) print("H1 : " .. tostring(tc:check(Const("H1")))) print("H2 : " .. tostring(tc:check(Const("H2")))) print("H3 : " .. tostring(tc:check(Const("H3")))) print("H4 : " .. tostring(tc:check(Const("H4")))) print("N : " .. tostring(get_formatter()(env, tc:check(Const("N"))))) -- N : Type.{0} assert(not tc:is_def_eq(Const("a"), Const("b")))