/- Copyright (c) 2015 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Robert Y. Lewis The real numbers, constructed as equivalence classes of Cauchy sequences of rationals. This construction follows Bishop and Bridges (1985). The construction of the reals is arranged in four files. - basic.lean proves properties about regular sequences of rationals in the namespace rat_seq, defines ℝ to be the quotient type of regular sequences mod equivalence, and shows ℝ is a ring in namespace real. No classical axioms are used. - order.lean defines an order on regular sequences and lifts the order to ℝ. In the namespace real, ℝ is shown to be an ordered ring. No classical axioms are used. - division.lean defines the inverse of a regular sequence and lifts this to ℝ. If a sequence is equivalent to the 0 sequence, its inverse is the zero sequence. In the namespace real, ℝ is shown to be an ordered field. This construction is classical. - complete.lean -/ import data.nat data.rat.order data.pnat open nat eq pnat open - [coercion] rat local postfix `⁻¹` := pnat.inv -- small helper lemmas private theorem s_mul_assoc_lemma_3 (a b n : ℕ+) (p : ℚ) : p * ((a * n)⁻¹ + (b * n)⁻¹) = p * (a⁻¹ + b⁻¹) * n⁻¹ := by rewrite [rat.mul_assoc, right_distrib, *pnat.inv_mul_eq_mul_inv] private theorem s_mul_assoc_lemma_4 {n : ℕ+} {ε q : ℚ} (Hε : ε > 0) (Hq : q > 0) (H : n ≥ pceil (q / ε)) : q * n⁻¹ ≤ ε := begin note H2 := pceil_helper H (div_pos_of_pos_of_pos Hq Hε), note H3 := mul_le_of_le_div (div_pos_of_pos_of_pos Hq Hε) H2, rewrite -(one_mul ε), apply mul_le_mul_of_mul_div_le, repeat assumption end private theorem find_thirds (a b : ℚ) (H : b > 0) : ∃ n : ℕ+, a + n⁻¹ + n⁻¹ + n⁻¹ < a + b := let n := pceil (of_nat 4 / b) in have of_nat 3 * n⁻¹ < b, from calc of_nat 3 * n⁻¹ < of_nat 4 * n⁻¹ : mul_lt_mul_of_pos_right dec_trivial !pnat.inv_pos ... ≤ of_nat 4 * (b / of_nat 4) : mul_le_mul_of_nonneg_left (!inv_pceil_div dec_trivial H) !of_nat_nonneg ... = b / of_nat 4 * of_nat 4 : mul.comm ... = b : !div_mul_cancel dec_trivial, exists.intro n (calc a + n⁻¹ + n⁻¹ + n⁻¹ = a + (1 + 1 + 1) * n⁻¹ : by rewrite [+right_distrib, +rat.one_mul, -+add.assoc] ... = a + of_nat 3 * n⁻¹ : {show 1+1+1=of_nat 3, from dec_trivial} ... < a + b : rat.add_lt_add_left this a) private theorem squeeze {a b : ℚ} (H : ∀ j : ℕ+, a ≤ b + j⁻¹ + j⁻¹ + j⁻¹) : a ≤ b := begin apply le_of_not_gt, intro Hb, cases exists_add_lt_and_pos_of_lt Hb with [c, Hc], cases find_thirds b c (and.right Hc) with [j, Hbj], have Ha : a > b + j⁻¹ + j⁻¹ + j⁻¹, from lt.trans Hbj (and.left Hc), apply (not_le_of_gt Ha) !H end private theorem rewrite_helper (a b c d : ℚ) : a * b - c * d = a * (b - d) + (a - c) * d := by rewrite [mul_sub_left_distrib, mul_sub_right_distrib, add_sub, sub_add_cancel] private theorem rewrite_helper3 (a b c d e f g: ℚ) : a * (b + c) - (d * e + f * g) = (a * b - d * e) + (a * c - f * g) := by rewrite [left_distrib, add_sub_comm] private theorem rewrite_helper4 (a b c d : ℚ) : a * b - c * d = (a * b - a * d) + (a * d - c * d) := by rewrite[add_sub, sub_add_cancel] private theorem rewrite_helper5 (a b x y : ℚ) : a - b = (a - x) + (x - y) + (y - b) := by rewrite[*add_sub, *sub_add_cancel] private theorem rewrite_helper7 (a b c d x : ℚ) : a * b * c - d = (b * c) * (a - x) + (x * b * c - d) := begin have ∀ (a b c : ℚ), a * b * c = b * c * a, begin intros a b c, rewrite (mul.right_comm b c a), rewrite (mul.comm b a) end, rewrite [mul_sub_left_distrib, add_sub], calc a * b * c - d = a * b * c - x * b * c + x * b * c - d : sub_add_cancel ... = b * c * a - b * c * x + x * b * c - d : begin rewrite [this a b c, this x b c] end end private theorem ineq_helper (a b : ℚ) (k m n : ℕ+) (H : a ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹) (H2 : b ≤ (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹) : (rat_of_pnat k) * a + b * (rat_of_pnat k) ≤ m⁻¹ + n⁻¹ := assert H3 : (k * 2 * m)⁻¹ + (k * 2 * n)⁻¹ = (2 * k)⁻¹ * (m⁻¹ + n⁻¹), begin rewrite [left_distrib, *pnat.inv_mul_eq_mul_inv], rewrite (mul.comm k⁻¹) end, have H' : a ≤ (2 * k)⁻¹ * (m⁻¹ + n⁻¹), begin rewrite H3 at H, exact H end, have H2' : b ≤ (2 * k)⁻¹ * (m⁻¹ + n⁻¹), begin rewrite H3 at H2, exact H2 end, have a + b ≤ k⁻¹ * (m⁻¹ + n⁻¹), from calc a + b ≤ (2 * k)⁻¹ * (m⁻¹ + n⁻¹) + (2 * k)⁻¹ * (m⁻¹ + n⁻¹) : add_le_add H' H2' ... = ((2 * k)⁻¹ + (2 * k)⁻¹) * (m⁻¹ + n⁻¹) : by rewrite right_distrib ... = k⁻¹ * (m⁻¹ + n⁻¹) : by rewrite (pnat.add_halves k), calc (rat_of_pnat k) * a + b * (rat_of_pnat k) = (rat_of_pnat k) * a + (rat_of_pnat k) * b : by rewrite (mul.comm b) ... = (rat_of_pnat k) * (a + b) : left_distrib ... ≤ (rat_of_pnat k) * (k⁻¹ * (m⁻¹ + n⁻¹)) : iff.mp (!le_iff_mul_le_mul_left !rat_of_pnat_is_pos) this ... = m⁻¹ + n⁻¹ : by rewrite[-mul.assoc, pnat.inv_cancel_left, one_mul] private theorem factor_lemma (a b c d e : ℚ) : abs (a + b + c - (d + (b + e))) = abs ((a - d) + (c - e)) := !congr_arg (calc a + b + c - (d + (b + e)) = a + b + c - (d + b + e) : rat.add_assoc ... = a + b - (d + b) + (c - e) : add_sub_comm ... = a + b - b - d + (c - e) : sub_add_eq_sub_sub_swap ... = a - d + (c - e) : add_sub_cancel) private theorem factor_lemma_2 (a b c d : ℚ) : (a + b) + (c + d) = (a + c) + (d + b) := begin note H := (binary.comm4 add.comm add.assoc a b c d), rewrite [add.comm b d at H], exact H end -------------------------------------- -- define cauchy sequences and equivalence. show equivalence actually is one namespace rat_seq notation `seq` := ℕ+ → ℚ definition regular (s : seq) := ∀ m n : ℕ+, abs (s m - s n) ≤ m⁻¹ + n⁻¹ definition equiv (s t : seq) := ∀ n : ℕ+, abs (s n - t n) ≤ n⁻¹ + n⁻¹ infix `≡` := equiv theorem equiv.refl (s : seq) : s ≡ s := begin intros, rewrite [sub_self, abs_zero], apply add_invs_nonneg end theorem equiv.symm (s t : seq) (H : s ≡ t) : t ≡ s := begin intros, rewrite [-abs_neg, neg_sub], exact H n end theorem bdd_of_eq {s t : seq} (H : s ≡ t) : ∀ j : ℕ+, ∀ n : ℕ+, n ≥ 2 * j → abs (s n - t n) ≤ j⁻¹ := begin intros [j, n, Hn], apply le.trans, apply H, rewrite -(pnat.add_halves j), apply add_le_add, apply inv_ge_of_le Hn, apply inv_ge_of_le Hn end theorem eq_of_bdd {s t : seq} (Hs : regular s) (Ht : regular t) (H : ∀ j : ℕ+, ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ j⁻¹) : s ≡ t := begin intros, have Hj : (∀ j : ℕ+, abs (s n - t n) ≤ n⁻¹ + n⁻¹ + j⁻¹ + j⁻¹ + j⁻¹), begin intros, cases H j with [Nj, HNj], rewrite [-(sub_add_cancel (s n) (s (max j Nj))), +sub_eq_add_neg, add.assoc (s n + -s (max j Nj)), ↑regular at *], apply rat.le_trans, apply abs_add_le_abs_add_abs, apply rat.le_trans, apply add_le_add, apply Hs, rewrite [-(sub_add_cancel (s (max j Nj)) (t (max j Nj))), add.assoc], apply abs_add_le_abs_add_abs, apply rat.le_trans, apply rat.add_le_add_left, apply add_le_add, apply HNj (max j Nj) (pnat.max_right j Nj), apply Ht, have hsimp : ∀ m : ℕ+, n⁻¹ + m⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) = n⁻¹ + n⁻¹ + j⁻¹ + (m⁻¹ + m⁻¹), from λm, calc n⁻¹ + m⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) = n⁻¹ + (j⁻¹ + (m⁻¹ + n⁻¹)) + m⁻¹ : add.right_comm ... = n⁻¹ + (j⁻¹ + m⁻¹ + n⁻¹) + m⁻¹ : add.assoc ... = n⁻¹ + (n⁻¹ + (j⁻¹ + m⁻¹)) + m⁻¹ : add.comm ... = n⁻¹ + n⁻¹ + j⁻¹ + (m⁻¹ + m⁻¹) : by rewrite[-*add.assoc], rewrite hsimp, have Hms : (max j Nj)⁻¹ + (max j Nj)⁻¹ ≤ j⁻¹ + j⁻¹, begin apply add_le_add, apply inv_ge_of_le (pnat.max_left j Nj), apply inv_ge_of_le (pnat.max_left j Nj), end, apply (calc n⁻¹ + n⁻¹ + j⁻¹ + ((max j Nj)⁻¹ + (max j Nj)⁻¹) ≤ n⁻¹ + n⁻¹ + j⁻¹ + (j⁻¹ + j⁻¹) : rat.add_le_add_left Hms ... = n⁻¹ + n⁻¹ + j⁻¹ + j⁻¹ + j⁻¹ : by rewrite *rat.add_assoc) end, apply squeeze Hj end theorem eq_of_bdd_var {s t : seq} (Hs : regular s) (Ht : regular t) (H : ∀ ε : ℚ, ε > 0 → ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ ε) : s ≡ t := begin apply eq_of_bdd, repeat assumption, intros, apply H, apply pnat.inv_pos end theorem bdd_of_eq_var {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) : ∀ ε : ℚ, ε > 0 → ∃ Nj : ℕ+, ∀ n : ℕ+, Nj ≤ n → abs (s n - t n) ≤ ε := begin intro ε Hε, cases pnat_bound Hε with [N, HN], existsi 2 * N, intro n Hn, apply rat.le_trans, apply bdd_of_eq Heq N n Hn, exact HN -- assumption -- TODO: something funny here; what is 11.source.to_has_le_2? end theorem equiv.trans (s t u : seq) (Hs : regular s) (Ht : regular t) (Hu : regular u) (H : s ≡ t) (H2 : t ≡ u) : s ≡ u := begin apply eq_of_bdd Hs Hu, intros, existsi 2 * (2 * j), intro n Hn, rewrite [-sub_add_cancel (s n) (t n), *sub_eq_add_neg, add.assoc], apply rat.le_trans, apply abs_add_le_abs_add_abs, have Hst : abs (s n - t n) ≤ (2 * j)⁻¹, from bdd_of_eq H _ _ Hn, have Htu : abs (t n - u n) ≤ (2 * j)⁻¹, from bdd_of_eq H2 _ _ Hn, rewrite -(pnat.add_halves j), apply add_le_add, exact Hst, exact Htu end ----------------------------------- -- define operations on cauchy sequences. show operations preserve regularity private definition K (s : seq) : ℕ+ := pnat.pos (ubound (abs (s pone)) + 1 + 1) dec_trivial private theorem canon_bound {s : seq} (Hs : regular s) (n : ℕ+) : abs (s n) ≤ rat_of_pnat (K s) := calc abs (s n) = abs (s n - s pone + s pone) : by rewrite sub_add_cancel ... ≤ abs (s n - s pone) + abs (s pone) : abs_add_le_abs_add_abs ... ≤ n⁻¹ + pone⁻¹ + abs (s pone) : add_le_add_right !Hs ... = n⁻¹ + (1 + abs (s pone)) : by rewrite [pone_inv, rat.add_assoc] ... ≤ 1 + (1 + abs (s pone)) : add_le_add_right (inv_le_one n) ... = abs (s pone) + (1 + 1) : by rewrite [add.comm 1 (abs (s pone)), add.comm 1, rat.add_assoc] ... ≤ of_nat (ubound (abs (s pone))) + (1 + 1) : add_le_add_right (!ubound_ge) ... = of_nat (ubound (abs (s pone)) + (1 + 1)) : of_nat_add ... = of_nat (ubound (abs (s pone)) + 1 + 1) : add.assoc ... = rat_of_pnat (K s) : by esimp theorem bdd_of_regular {s : seq} (H : regular s) : ∃ b : ℚ, ∀ n : ℕ+, s n ≤ b := begin existsi rat_of_pnat (K s), intros, apply rat.le_trans, apply le_abs_self, apply canon_bound H end theorem bdd_of_regular_strict {s : seq} (H : regular s) : ∃ b : ℚ, ∀ n : ℕ+, s n < b := begin cases bdd_of_regular H with [b, Hb], existsi b + 1, intro n, apply rat.lt_of_le_of_lt, apply Hb, apply lt_add_of_pos_right, apply zero_lt_one end definition K₂ (s t : seq) := max (K s) (K t) private theorem K₂_symm (s t : seq) : K₂ s t = K₂ t s := if H : K s < K t then (assert H1 : K₂ s t = K t, from pnat.max_eq_right H, assert H2 : K₂ t s = K t, from pnat.max_eq_left (pnat.not_lt_of_ge (pnat.le_of_lt H)), by rewrite [H1, -H2]) else (assert H1 : K₂ s t = K s, from pnat.max_eq_left H, if J : K t < K s then (assert H2 : K₂ t s = K s, from pnat.max_eq_right J, by rewrite [H1, -H2]) else (assert Heq : K t = K s, from pnat.eq_of_le_of_ge (pnat.le_of_not_gt H) (pnat.le_of_not_gt J), by rewrite [↑K₂, Heq])) theorem canon_2_bound_left (s t : seq) (Hs : regular s) (n : ℕ+) : abs (s n) ≤ rat_of_pnat (K₂ s t) := calc abs (s n) ≤ rat_of_pnat (K s) : canon_bound Hs n ... ≤ rat_of_pnat (K₂ s t) : rat_of_pnat_le_of_pnat_le (!pnat.max_left) theorem canon_2_bound_right (s t : seq) (Ht : regular t) (n : ℕ+) : abs (t n) ≤ rat_of_pnat (K₂ s t) := calc abs (t n) ≤ rat_of_pnat (K t) : canon_bound Ht n ... ≤ rat_of_pnat (K₂ s t) : rat_of_pnat_le_of_pnat_le (!pnat.max_right) definition sadd (s t : seq) : seq := λ n, (s (2 * n)) + (t (2 * n)) theorem reg_add_reg {s t : seq} (Hs : regular s) (Ht : regular t) : regular (sadd s t) := begin rewrite [↑regular at *, ↑sadd], intros, rewrite add_sub_comm, apply rat.le_trans, apply abs_add_le_abs_add_abs, rewrite add_halves_double, apply add_le_add, apply Hs, apply Ht end definition smul (s t : seq) : seq := λ n : ℕ+, (s ((K₂ s t) * 2 * n)) * (t ((K₂ s t) * 2 * n)) theorem reg_mul_reg {s t : seq} (Hs : regular s) (Ht : regular t) : regular (smul s t) := begin rewrite [↑regular at *, ↑smul], intros, rewrite rewrite_helper, apply rat.le_trans, apply abs_add_le_abs_add_abs, apply rat.le_trans, apply add_le_add, rewrite abs_mul, apply mul_le_mul_of_nonneg_right, apply canon_2_bound_left s t Hs, apply abs_nonneg, rewrite abs_mul, apply mul_le_mul_of_nonneg_left, apply canon_2_bound_right s t Ht, apply abs_nonneg, apply ineq_helper, apply Ht, apply Hs end definition sneg (s : seq) : seq := λ n : ℕ+, - (s n) theorem reg_neg_reg {s : seq} (Hs : regular s) : regular (sneg s) := begin rewrite [↑regular at *, ↑sneg], intros, rewrite [-abs_neg, neg_sub, sub_neg_eq_add, add.comm], apply Hs end ----------------------------------- -- show properties of +, *, - definition zero : seq := λ n, 0 definition one : seq := λ n, 1 theorem s_add_comm (s t : seq) : sadd s t ≡ sadd t s := begin esimp [sadd], intro n, rewrite [sub_add_eq_sub_sub, add_sub_cancel, sub_self, abs_zero], apply add_invs_nonneg end theorem s_add_assoc (s t u : seq) (Hs : regular s) (Hu : regular u) : sadd (sadd s t) u ≡ sadd s (sadd t u) := begin rewrite [↑sadd, ↑equiv, ↑regular at *], intros, rewrite factor_lemma, apply rat.le_trans, apply abs_add_le_abs_add_abs, apply rat.le_trans, rotate 1, apply add_le_add_right, apply inv_two_mul_le_inv, rewrite [-(pnat.add_halves (2 * n)), -(pnat.add_halves n), factor_lemma_2], apply add_le_add, apply Hs, apply Hu end theorem s_mul_comm (s t : seq) : smul s t ≡ smul t s := begin rewrite ↑smul, intros n, rewrite [*(K₂_symm s t), rat.mul_comm, sub_self, abs_zero], apply add_invs_nonneg end private definition DK (s t : seq) := (K₂ s t) * 2 private theorem DK_rewrite (s t : seq) : (K₂ s t) * 2 = DK s t := rfl private definition TK (s t u : seq) := (DK (λ (n : ℕ+), s (mul (DK s t) n) * t (mul (DK s t) n)) u) private theorem TK_rewrite (s t u : seq) : (DK (λ (n : ℕ+), s (mul (DK s t) n) * t (mul (DK s t) n)) u) = TK s t u := rfl private theorem s_mul_assoc_lemma (s t u : seq) (a b c d : ℕ+) : abs (s a * t a * u b - s c * t d * u d) ≤ abs (t a) * abs (u b) * abs (s a - s c) + abs (s c) * abs (t a) * abs (u b - u d) + abs (s c) * abs (u d) * abs (t a - t d) := begin rewrite (rewrite_helper7 _ _ _ _ (s c)), apply rat.le_trans, apply abs_add_le_abs_add_abs, rewrite rat.add_assoc, apply add_le_add, rewrite 2 abs_mul, apply le.refl, rewrite [*rat.mul_assoc, -mul_sub_left_distrib, -left_distrib, abs_mul], apply mul_le_mul_of_nonneg_left, rewrite rewrite_helper, apply le.trans, apply abs_add_le_abs_add_abs, apply add_le_add, rewrite abs_mul, apply rat.le_refl, rewrite [abs_mul, rat.mul_comm], apply rat.le_refl, apply abs_nonneg end private definition Kq (s : seq) := rat_of_pnat (K s) + 1 private theorem Kq_bound {s : seq} (H : regular s) : ∀ n, abs (s n) ≤ Kq s := begin intros, apply le_of_lt, apply lt_of_le_of_lt, apply canon_bound H, apply lt_add_of_pos_right, apply zero_lt_one end private theorem Kq_bound_nonneg {s : seq} (H : regular s) : 0 ≤ Kq s := le.trans !abs_nonneg (Kq_bound H 2) private theorem Kq_bound_pos {s : seq} (H : regular s) : 0 < Kq s := have H1 : 0 ≤ rat_of_pnat (K s), from rat.le_trans (!abs_nonneg) (canon_bound H 2), add_pos_of_nonneg_of_pos H1 rat.zero_lt_one private theorem s_mul_assoc_lemma_5 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (a b c : ℕ+) : abs (t a) * abs (u b) * abs (s a - s c) ≤ (Kq t) * (Kq u) * (a⁻¹ + c⁻¹) := begin repeat apply mul_le_mul, apply Kq_bound Ht, apply Kq_bound Hu, apply abs_nonneg, apply Kq_bound_nonneg Ht, apply Hs, apply abs_nonneg, apply rat.mul_nonneg, apply Kq_bound_nonneg Ht, apply Kq_bound_nonneg Hu, end private theorem s_mul_assoc_lemma_2 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (a b c d : ℕ+) : abs (t a) * abs (u b) * abs (s a - s c) + abs (s c) * abs (t a) * abs (u b - u d) + abs (s c) * abs (u d) * abs (t a - t d) ≤ (Kq t) * (Kq u) * (a⁻¹ + c⁻¹) + (Kq s) * (Kq t) * (b⁻¹ + d⁻¹) + (Kq s) * (Kq u) * (a⁻¹ + d⁻¹) := begin apply add_le_add_three, repeat (assumption | apply mul_le_mul | apply Kq_bound | apply Kq_bound_nonneg | apply abs_nonneg), apply Hs, apply abs_nonneg, apply rat.mul_nonneg, repeat (assumption | apply mul_le_mul | apply Kq_bound | apply Kq_bound_nonneg | apply abs_nonneg), apply Hu, apply abs_nonneg, apply rat.mul_nonneg, repeat (assumption | apply mul_le_mul | apply Kq_bound | apply Kq_bound_nonneg | apply abs_nonneg), apply Ht, apply abs_nonneg, apply rat.mul_nonneg, repeat (apply Kq_bound_nonneg; assumption) end theorem s_mul_assoc {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) : smul (smul s t) u ≡ smul s (smul t u) := begin apply eq_of_bdd_var, repeat apply reg_mul_reg, apply Hs, apply Ht, apply Hu, apply reg_mul_reg Hs, apply reg_mul_reg Ht Hu, intros, apply exists.intro, intros, rewrite [↑smul, *DK_rewrite, *TK_rewrite, -*pnat.mul_assoc, -*mul.assoc], apply rat.le_trans, apply s_mul_assoc_lemma, apply rat.le_trans, apply s_mul_assoc_lemma_2, apply Hs, apply Ht, apply Hu, rewrite [*s_mul_assoc_lemma_3, -distrib_three_right], apply s_mul_assoc_lemma_4, apply a, repeat apply add_pos, repeat apply mul_pos, apply Kq_bound_pos Ht, apply Kq_bound_pos Hu, apply add_pos, repeat apply pnat.inv_pos, repeat apply rat.mul_pos, apply Kq_bound_pos Hs, apply Kq_bound_pos Ht, apply add_pos, repeat apply pnat.inv_pos, repeat apply rat.mul_pos, apply Kq_bound_pos Hs, apply Kq_bound_pos Hu, apply add_pos, repeat apply pnat.inv_pos, apply a_1 end theorem zero_is_reg : regular zero := begin rewrite [↑regular, ↑zero], intros, rewrite [sub_zero, abs_zero], apply add_invs_nonneg end theorem s_zero_add (s : seq) (H : regular s) : sadd zero s ≡ s := begin rewrite [↑sadd, ↑zero, ↑equiv, ↑regular at H], intros, rewrite [rat.zero_add], apply rat.le_trans, apply H, apply add_le_add, apply inv_two_mul_le_inv, apply rat.le_refl end theorem s_add_zero (s : seq) (H : regular s) : sadd s zero ≡ s := begin rewrite [↑sadd, ↑zero, ↑equiv, ↑regular at H], intros, rewrite [rat.add_zero], apply rat.le_trans, apply H, apply add_le_add, apply inv_two_mul_le_inv, apply rat.le_refl end theorem s_neg_cancel (s : seq) (H : regular s) : sadd (sneg s) s ≡ zero := begin rewrite [↑sadd, ↑sneg, ↑regular at H, ↑zero, ↑equiv], intros, rewrite [neg_add_eq_sub, sub_self, sub_zero, abs_zero], apply add_invs_nonneg end theorem neg_s_cancel (s : seq) (H : regular s) : sadd s (sneg s) ≡ zero := begin apply equiv.trans, rotate 3, apply s_add_comm, apply s_neg_cancel s H, repeat (apply reg_add_reg | apply reg_neg_reg | assumption), apply zero_is_reg end theorem add_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Hv : regular v) (Esu : s ≡ u) (Etv : t ≡ v) : sadd s t ≡ sadd u v := begin rewrite [↑sadd, ↑equiv at *], intros, rewrite [add_sub_comm, add_halves_double], apply rat.le_trans, apply abs_add_le_abs_add_abs, apply add_le_add, apply Esu, apply Etv end set_option tactic.goal_names false private theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c : ℕ+) (j : ℕ+) : ∃ N : ℕ+, ∀ n : ℕ+, n ≥ N → abs (s (a * n) * t (b * n) - s (c * n) * t (c * n)) ≤ j⁻¹ := begin existsi pceil (((rat_of_pnat (K s)) * (b⁻¹ + c⁻¹) + (a⁻¹ + c⁻¹) * (rat_of_pnat (K t))) * (rat_of_pnat j)), intros n Hn, rewrite rewrite_helper4, apply rat.le_trans, apply abs_add_le_abs_add_abs, apply rat.le_trans, rotate 1, show n⁻¹ * ((rat_of_pnat (K s)) * (b⁻¹ + c⁻¹)) + n⁻¹ * ((a⁻¹ + c⁻¹) * (rat_of_pnat (K t))) ≤ j⁻¹, begin rewrite -left_distrib, apply rat.le_trans, apply mul_le_mul_of_nonneg_right, apply pceil_helper Hn, { repeat (apply mul_pos | apply add_pos | apply rat_of_pnat_is_pos | apply pnat.inv_pos) }, apply rat.le_of_lt, apply add_pos, apply rat.mul_pos, apply rat_of_pnat_is_pos, apply add_pos, apply pnat.inv_pos, apply pnat.inv_pos, apply rat.mul_pos, apply add_pos, apply pnat.inv_pos, apply pnat.inv_pos, apply rat_of_pnat_is_pos, have H : (rat_of_pnat (K s) * (b⁻¹ + c⁻¹) + (a⁻¹ + c⁻¹) * rat_of_pnat (K t)) ≠ 0, begin apply ne_of_gt, repeat (apply mul_pos | apply add_pos | apply rat_of_pnat_is_pos | apply pnat.inv_pos), end, rewrite (!div_helper H), apply rat.le_refl end, apply add_le_add, rewrite [-mul_sub_left_distrib, abs_mul], apply rat.le_trans, apply mul_le_mul, apply canon_bound, apply Hs, apply Ht, apply abs_nonneg, apply rat.le_of_lt, apply rat_of_pnat_is_pos, rewrite [*pnat.inv_mul_eq_mul_inv, -right_distrib, -rat.mul_assoc, rat.mul_comm], apply mul_le_mul_of_nonneg_left, apply rat.le_refl, apply rat.le_of_lt, apply pnat.inv_pos, rewrite [-mul_sub_right_distrib, abs_mul], apply rat.le_trans, apply mul_le_mul, apply Hs, apply canon_bound, apply Ht, apply abs_nonneg, apply add_invs_nonneg, rewrite [*pnat.inv_mul_eq_mul_inv, -right_distrib, mul.comm _ n⁻¹, rat.mul_assoc], apply mul_le_mul, repeat apply rat.le_refl, apply rat.le_of_lt, apply rat.mul_pos, apply add_pos, repeat apply pnat.inv_pos, apply rat_of_pnat_is_pos, apply rat.le_of_lt, apply pnat.inv_pos end theorem s_distrib {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) : smul s (sadd t u) ≡ sadd (smul s t) (smul s u) := begin apply eq_of_bdd, repeat (assumption | apply reg_add_reg | apply reg_mul_reg), intros, let exh1 := λ a b c, mul_bound_helper Hs Ht a b c (2 * j), apply exists.elim, apply exh1, rotate 3, intros N1 HN1, let exh2 := λ d e f, mul_bound_helper Hs Hu d e f (2 * j), apply exists.elim, apply exh2, rotate 3, intros N2 HN2, existsi max N1 N2, intros n Hn, rewrite [↑sadd at *, ↑smul, rewrite_helper3, -pnat.add_halves j, -*pnat.mul_assoc at *], apply rat.le_trans, apply abs_add_le_abs_add_abs, apply add_le_add, apply HN1, apply pnat.le_trans, apply pnat.max_left N1 N2, apply Hn, apply HN2, apply pnat.le_trans, apply pnat.max_right N1 N2, apply Hn end theorem mul_zero_equiv_zero {s t : seq} (Hs : regular s) (Ht : regular t) (Htz : t ≡ zero) : smul s t ≡ zero := begin apply eq_of_bdd_var, apply reg_mul_reg Hs Ht, apply zero_is_reg, intro ε Hε, let Bd := bdd_of_eq_var Ht zero_is_reg Htz (ε / (Kq s)) (div_pos_of_pos_of_pos Hε (Kq_bound_pos Hs)), cases Bd with [N, HN], existsi N, intro n Hn, rewrite [↑equiv at Htz, ↑zero at *, sub_zero, ↑smul, abs_mul], apply le.trans, apply mul_le_mul, apply Kq_bound Hs, have HN' : ∀ (n : ℕ+), N ≤ n → abs (t n) ≤ ε / Kq s, from λ n, (eq.subst (sub_zero (t n)) (HN n)), apply HN', apply pnat.le_trans Hn, apply pnat.mul_le_mul_left, apply abs_nonneg, apply le_of_lt (Kq_bound_pos Hs), rewrite (mul_div_cancel' (ne.symm (ne_of_lt (Kq_bound_pos Hs)))), apply le.refl end private theorem neg_bound_eq_bound (s : seq) : K (sneg s) = K s := by rewrite [↑K, ↑sneg, abs_neg] private theorem neg_bound2_eq_bound2 (s t : seq) : K₂ s (sneg t) = K₂ s t := by rewrite [↑K₂, neg_bound_eq_bound] private theorem sneg_def (s : seq) : (λ (n : ℕ+), -(s n)) = sneg s := rfl theorem mul_neg_equiv_neg_mul {s t : seq} : smul s (sneg t) ≡ sneg (smul s t) := begin rewrite [↑equiv, ↑smul], intros, rewrite [↑sneg, *sub_neg_eq_add, -neg_mul_eq_mul_neg, add.comm, *sneg_def, *neg_bound2_eq_bound2, add.right_inv, abs_zero], apply add_invs_nonneg end theorem equiv_of_diff_equiv_zero {s t : seq} (Hs : regular s) (Ht : regular t) (H : sadd s (sneg t) ≡ zero) : s ≡ t := begin have hsimp : ∀ a b c d e : ℚ, a + b + c + (d + e) = b + d + a + e + c, from λ a b c d e, calc a + b + c + (d + e) = a + b + (d + e) + c : add.right_comm ... = a + (b + d) + e + c : by rewrite[-*add.assoc] ... = b + d + a + e + c : add.comm, apply eq_of_bdd Hs Ht, intros, note He := bdd_of_eq H, existsi 2 * (2 * (2 * j)), intros n Hn, rewrite (rewrite_helper5 _ _ (s (2 * n)) (t (2 * n))), apply rat.le_trans, apply abs_add_three, apply rat.le_trans, apply add_le_add_three, apply Hs, rewrite [↑sadd at He, ↑sneg at He, ↑zero at He], let He' := λ a b c, eq.subst !sub_zero (He a b c), apply (He' _ _ Hn), apply Ht, rewrite [hsimp, pnat.add_halves, -(pnat.add_halves j), -(pnat.add_halves (2 * j)), -*rat.add_assoc], apply add_le_add_right, apply add_le_add_three, repeat (apply rat.le_trans; apply inv_ge_of_le Hn; apply inv_two_mul_le_inv) end theorem s_sub_cancel (s : seq) : sadd s (sneg s) ≡ zero := begin rewrite [↑equiv, ↑sadd, ↑sneg, ↑zero], intros, rewrite [sub_zero, add.right_inv, abs_zero], apply add_invs_nonneg end theorem diff_equiv_zero_of_equiv {s t : seq} (Hs : regular s) (Ht : regular t) (H : s ≡ t) : sadd s (sneg t) ≡ zero := begin apply equiv.trans, rotate 4, apply s_sub_cancel t, rotate 2, apply zero_is_reg, apply add_well_defined, repeat (assumption | apply reg_neg_reg), apply equiv.refl, repeat (assumption | apply reg_add_reg | apply reg_neg_reg) end private theorem mul_well_defined_half1 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Etu : t ≡ u) : smul s t ≡ smul s u := begin apply equiv_of_diff_equiv_zero, rotate 2, apply equiv.trans, rotate 3, apply equiv.symm, apply add_well_defined, rotate 4, apply equiv.refl, apply mul_neg_equiv_neg_mul, apply equiv.trans, rotate 3, apply equiv.symm, apply s_distrib, rotate 3, apply mul_zero_equiv_zero, rotate 2, apply diff_equiv_zero_of_equiv, repeat (assumption | apply reg_mul_reg | apply reg_neg_reg | apply reg_add_reg | apply zero_is_reg) end private theorem mul_well_defined_half2 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Est : s ≡ t) : smul s u ≡ smul t u := begin apply equiv.trans, rotate 3, apply s_mul_comm, apply equiv.trans, rotate 3, apply mul_well_defined_half1, rotate 2, apply Ht, rotate 1, apply s_mul_comm, repeat (assumption | apply reg_mul_reg) end theorem mul_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Hv : regular v) (Esu : s ≡ u) (Etv : t ≡ v) : smul s t ≡ smul u v := begin apply equiv.trans, exact reg_mul_reg Hs Ht, exact reg_mul_reg Hs Hv, exact reg_mul_reg Hu Hv, apply mul_well_defined_half1, repeat assumption, apply mul_well_defined_half2, repeat assumption end theorem neg_well_defined {s t : seq} (Est : s ≡ t) : sneg s ≡ sneg t := begin rewrite [↑sneg, ↑equiv at *], intros, rewrite [-abs_neg, neg_sub, sub_neg_eq_add, add.comm], apply Est end theorem one_is_reg : regular one := begin rewrite [↑regular, ↑one], intros, rewrite [sub_self, abs_zero], apply add_invs_nonneg end theorem s_one_mul {s : seq} (H : regular s) : smul one s ≡ s := begin intros, rewrite [↑smul, ↑one, rat.one_mul], apply rat.le_trans, apply H, apply add_le_add_right, apply pnat.inv_mul_le_inv end theorem s_mul_one {s : seq} (H : regular s) : smul s one ≡ s := begin apply equiv.trans, apply reg_mul_reg H one_is_reg, rotate 2, apply s_mul_comm, apply s_one_mul H, apply reg_mul_reg one_is_reg H, apply H end theorem zero_nequiv_one : ¬ zero ≡ one := begin intro Hz, rewrite [↑equiv at Hz, ↑zero at Hz, ↑one at Hz], note H := Hz (2 * 2), rewrite [zero_sub at H, abs_neg at H, pnat.add_halves at H], have H' : pone⁻¹ ≤ 2⁻¹, from calc pone⁻¹ = 1 : by rewrite -pone_inv ... = abs 1 : abs_of_pos zero_lt_one ... ≤ 2⁻¹ : H, let H'' := ge_of_inv_le H', apply absurd (one_lt_two) (pnat.not_lt_of_ge H'') end --------------------------------------------- -- constant sequences definition const (a : ℚ) : seq := λ n, a theorem const_reg (a : ℚ) : regular (const a) := begin intros, rewrite [↑const, sub_self, abs_zero], apply add_invs_nonneg end theorem add_consts (a b : ℚ) : sadd (const a) (const b) ≡ const (a + b) := by apply equiv.refl theorem mul_consts (a b : ℚ) : smul (const a) (const b) ≡ const (a * b) := by apply equiv.refl theorem neg_const (a : ℚ) : sneg (const a) ≡ const (-a) := by apply equiv.refl section open rat lemma eq_of_const_equiv {a b : ℚ} (H : const a ≡ const b) : a = b := have H₁ : ∀ n : ℕ+, abs (a - b) ≤ n⁻¹ + n⁻¹, from H, eq_of_forall_abs_sub_le (take ε, suppose ε > 0, have ε / 2 > 0, begin exact div_pos_of_pos_of_pos this two_pos end, obtain n (Hn : n⁻¹ ≤ ε / 2), from pnat_bound this, show abs (a - b) ≤ ε, from calc abs (a - b) ≤ n⁻¹ + n⁻¹ : H₁ n ... ≤ ε / 2 + ε / 2 : add_le_add Hn Hn ... = ε : add_halves) end --------------------------------------------- -- create the type of regular sequences and lift theorems record reg_seq : Type := (sq : seq) (is_reg : regular sq) definition requiv (s t : reg_seq) := (reg_seq.sq s) ≡ (reg_seq.sq t) definition requiv.refl (s : reg_seq) : requiv s s := equiv.refl (reg_seq.sq s) definition requiv.symm (s t : reg_seq) (H : requiv s t) : requiv t s := equiv.symm (reg_seq.sq s) (reg_seq.sq t) H definition requiv.trans (s t u : reg_seq) (H : requiv s t) (H2 : requiv t u) : requiv s u := equiv.trans _ _ _ (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) H H2 definition radd (s t : reg_seq) : reg_seq := reg_seq.mk (sadd (reg_seq.sq s) (reg_seq.sq t)) (reg_add_reg (reg_seq.is_reg s) (reg_seq.is_reg t)) infix + := radd definition rmul (s t : reg_seq) : reg_seq := reg_seq.mk (smul (reg_seq.sq s) (reg_seq.sq t)) (reg_mul_reg (reg_seq.is_reg s) (reg_seq.is_reg t)) infix * := rmul definition rneg (s : reg_seq) : reg_seq := reg_seq.mk (sneg (reg_seq.sq s)) (reg_neg_reg (reg_seq.is_reg s)) prefix - := rneg definition radd_well_defined {s t u v : reg_seq} (H : requiv s u) (H2 : requiv t v) : requiv (s + t) (u + v) := add_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) (reg_seq.is_reg v) H H2 definition rmul_well_defined {s t u v : reg_seq} (H : requiv s u) (H2 : requiv t v) : requiv (s * t) (u * v) := mul_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) (reg_seq.is_reg v) H H2 definition rneg_well_defined {s t : reg_seq} (H : requiv s t) : requiv (-s) (-t) := neg_well_defined H theorem requiv_is_equiv : equivalence requiv := mk_equivalence requiv requiv.refl requiv.symm requiv.trans definition reg_seq.to_setoid [instance] : setoid reg_seq := ⦃setoid, r := requiv, iseqv := requiv_is_equiv⦄ definition r_zero : reg_seq := reg_seq.mk (zero) (zero_is_reg) definition r_one : reg_seq := reg_seq.mk (one) (one_is_reg) theorem r_add_comm (s t : reg_seq) : requiv (s + t) (t + s) := s_add_comm (reg_seq.sq s) (reg_seq.sq t) theorem r_add_assoc (s t u : reg_seq) : requiv (s + t + u) (s + (t + u)) := s_add_assoc (reg_seq.sq s) (reg_seq.sq t) (reg_seq.sq u) (reg_seq.is_reg s) (reg_seq.is_reg u) theorem r_zero_add (s : reg_seq) : requiv (r_zero + s) s := s_zero_add (reg_seq.sq s) (reg_seq.is_reg s) theorem r_add_zero (s : reg_seq) : requiv (s + r_zero) s := s_add_zero (reg_seq.sq s) (reg_seq.is_reg s) theorem r_neg_cancel (s : reg_seq) : requiv (-s + s) r_zero := s_neg_cancel (reg_seq.sq s) (reg_seq.is_reg s) theorem r_mul_comm (s t : reg_seq) : requiv (s * t) (t * s) := s_mul_comm (reg_seq.sq s) (reg_seq.sq t) theorem r_mul_assoc (s t u : reg_seq) : requiv (s * t * u) (s * (t * u)) := s_mul_assoc (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) theorem r_mul_one (s : reg_seq) : requiv (s * r_one) s := s_mul_one (reg_seq.is_reg s) theorem r_one_mul (s : reg_seq) : requiv (r_one * s) s := s_one_mul (reg_seq.is_reg s) theorem r_distrib (s t u : reg_seq) : requiv (s * (t + u)) (s * t + s * u) := s_distrib (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) theorem r_zero_nequiv_one : ¬ requiv r_zero r_one := zero_nequiv_one definition r_const (a : ℚ) : reg_seq := reg_seq.mk (const a) (const_reg a) theorem r_add_consts (a b : ℚ) : requiv (r_const a + r_const b) (r_const (a + b)) := add_consts a b theorem r_mul_consts (a b : ℚ) : requiv (r_const a * r_const b) (r_const (a * b)) := mul_consts a b theorem r_neg_const (a : ℚ) : requiv (-r_const a) (r_const (-a)) := neg_const a end rat_seq ---------------------------------------------- -- take quotients to get ℝ and show it's a comm ring open rat_seq definition real := quot reg_seq.to_setoid namespace real notation `ℝ` := real protected definition prio := num.pred rat.prio protected definition add (x y : ℝ) : ℝ := (quot.lift_on₂ x y (λ a b, quot.mk (a + b)) (take a b c d : reg_seq, take Hab : requiv a c, take Hcd : requiv b d, quot.sound (radd_well_defined Hab Hcd))) --infix [priority real.prio] + := add protected definition mul (x y : ℝ) : ℝ := (quot.lift_on₂ x y (λ a b, quot.mk (a * b)) (take a b c d : reg_seq, take Hab : requiv a c, take Hcd : requiv b d, quot.sound (rmul_well_defined Hab Hcd))) --infix [priority real.prio] * := mul protected definition neg (x : ℝ) : ℝ := (quot.lift_on x (λ a, quot.mk (-a)) (take a b : reg_seq, take Hab : requiv a b, quot.sound (rneg_well_defined Hab))) --prefix [priority real.prio] `-` := neg definition real_has_add [reducible] [instance] [priority real.prio] : has_add real := has_add.mk real.add definition real_has_mul [reducible] [instance] [priority real.prio] : has_mul real := has_mul.mk real.mul definition real_has_neg [reducible] [instance] [priority real.prio] : has_neg real := has_neg.mk real.neg protected definition sub [reducible] (a b : ℝ) : real := a + (-b) definition real_has_sub [reducible] [instance] [priority real.prio] : has_sub real := has_sub.mk real.sub open rat -- no coercions before definition of_rat [coercion] (a : ℚ) : ℝ := quot.mk (r_const a) definition of_int [coercion] (i : ℤ) : ℝ := int.to.real i definition of_nat [coercion] (n : ℕ) : ℝ := nat.to.real n definition of_num [coercion] [reducible] (n : num) : ℝ := of_rat (rat.of_num n) definition real_has_zero [reducible] [instance] [priority real.prio] : has_zero real := has_zero.mk (of_rat 0) definition real_has_one [reducible] [instance] [priority real.prio] : has_one real := has_one.mk (of_rat 1) theorem real_zero_eq_rat_zero : (0:real) = of_rat (0:rat) := rfl theorem real_one_eq_rat_one : (1:real) = of_rat (1:rat) := rfl protected theorem add_comm (x y : ℝ) : x + y = y + x := quot.induction_on₂ x y (λ s t, quot.sound (r_add_comm s t)) protected theorem add_assoc (x y z : ℝ) : x + y + z = x + (y + z) := quot.induction_on₃ x y z (λ s t u, quot.sound (r_add_assoc s t u)) protected theorem zero_add (x : ℝ) : 0 + x = x := quot.induction_on x (λ s, quot.sound (r_zero_add s)) protected theorem add_zero (x : ℝ) : x + 0 = x := quot.induction_on x (λ s, quot.sound (r_add_zero s)) protected theorem neg_cancel (x : ℝ) : -x + x = 0 := quot.induction_on x (λ s, quot.sound (r_neg_cancel s)) protected theorem mul_assoc (x y z : ℝ) : x * y * z = x * (y * z) := quot.induction_on₃ x y z (λ s t u, quot.sound (r_mul_assoc s t u)) protected theorem mul_comm (x y : ℝ) : x * y = y * x := quot.induction_on₂ x y (λ s t, quot.sound (r_mul_comm s t)) protected theorem one_mul (x : ℝ) : 1 * x = x := quot.induction_on x (λ s, quot.sound (r_one_mul s)) protected theorem mul_one (x : ℝ) : x * 1 = x := quot.induction_on x (λ s, quot.sound (r_mul_one s)) protected theorem left_distrib (x y z : ℝ) : x * (y + z) = x * y + x * z := quot.induction_on₃ x y z (λ s t u, quot.sound (r_distrib s t u)) protected theorem right_distrib (x y z : ℝ) : (x + y) * z = x * z + y * z := by rewrite [real.mul_comm, real.left_distrib, {x * _}real.mul_comm, {y * _}real.mul_comm] protected theorem zero_ne_one : ¬ (0 : ℝ) = 1 := take H : 0 = 1, absurd (quot.exact H) (r_zero_nequiv_one) protected definition comm_ring [reducible] : comm_ring ℝ := begin fapply comm_ring.mk, exact add, exact real.add_assoc, exact of_num 0, exact real.zero_add, exact real.add_zero, exact neg, exact real.neg_cancel, exact real.add_comm, exact mul, exact real.mul_assoc, apply of_num 1, apply real.one_mul, apply real.mul_one, apply real.left_distrib, apply real.right_distrib, apply real.mul_comm end theorem of_int_eq (a : ℤ) : of_int a = of_rat (rat.of_int a) := rfl theorem of_nat_eq (a : ℕ) : of_nat a = of_rat (rat.of_nat a) := rfl theorem of_rat.inj {x y : ℚ} (H : of_rat x = of_rat y) : x = y := eq_of_const_equiv (quot.exact H) theorem eq_of_of_rat_eq_of_rat {x y : ℚ} (H : of_rat x = of_rat y) : x = y := of_rat.inj H theorem of_rat_eq_of_rat_iff (x y : ℚ) : of_rat x = of_rat y ↔ x = y := iff.intro eq_of_of_rat_eq_of_rat !congr_arg theorem of_int.inj {a b : ℤ} (H : of_int a = of_int b) : a = b := rat.of_int.inj (of_rat.inj H) theorem eq_of_of_int_eq_of_int {a b : ℤ} (H : of_int a = of_int b) : a = b := of_int.inj H theorem of_int_eq_of_int_iff (a b : ℤ) : of_int a = of_int b ↔ a = b := iff.intro of_int.inj !congr_arg theorem of_nat.inj {a b : ℕ} (H : of_nat a = of_nat b) : a = b := int.of_nat.inj (of_int.inj H) theorem eq_of_of_nat_eq_of_nat {a b : ℕ} (H : of_nat a = of_nat b) : a = b := of_nat.inj H theorem of_nat_eq_of_nat_iff (a b : ℕ) : of_nat a = of_nat b ↔ a = b := iff.intro of_nat.inj !congr_arg theorem of_rat_add (a b : ℚ) : of_rat (a + b) = of_rat a + of_rat b := quot.sound (r_add_consts a b) theorem of_rat_neg (a : ℚ) : of_rat (-a) = -of_rat a := eq.symm (quot.sound (r_neg_const a)) theorem of_rat_mul (a b : ℚ) : of_rat (a * b) = of_rat a * of_rat b := quot.sound (r_mul_consts a b) open int theorem of_int_add (a b : ℤ) : of_int (a + b) = of_int a + of_int b := by rewrite [of_int_eq, rat.of_int_add, of_rat_add] theorem of_int_neg (a : ℤ) : of_int (-a) = -of_int a := by rewrite [of_int_eq, rat.of_int_neg, of_rat_neg] theorem of_int_mul (a b : ℤ) : of_int (a * b) = of_int a * of_int b := by rewrite [of_int_eq, rat.of_int_mul, of_rat_mul] theorem of_nat_add (a b : ℕ) : of_nat (a + b) = of_nat a + of_nat b := by rewrite [of_nat_eq, rat.of_nat_add, of_rat_add] theorem of_nat_mul (a b : ℕ) : of_nat (a * b) = of_nat a * of_nat b := by rewrite [of_nat_eq, rat.of_nat_mul, of_rat_mul] theorem add_half_of_rat (n : ℕ+) : of_rat (2 * n)⁻¹ + of_rat (2 * n)⁻¹ = of_rat (n⁻¹) := by rewrite [-of_rat_add, pnat.add_halves] theorem one_add_one : 1 + 1 = (2 : ℝ) := rfl end real