/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn The "equivalence closure" of a type-valued relation. Given a binary type-valued relation (fibration), we add reflexivity, symmetry and transitivity terms -/ import .relation types.eq2 arity open eq inductive e_closure {A : Type} (R : A → A → Type) : A → A → Type := | of_rel : Π{a a'} (r : R a a'), e_closure R a a' | refl : Πa, e_closure R a a | symm : Π{a a'} (r : e_closure R a a'), e_closure R a' a | trans : Π{a a' a''} (r : e_closure R a a') (r' : e_closure R a' a''), e_closure R a a'' namespace e_closure infix `⬝r`:75 := e_closure.trans postfix `⁻¹ʳ`:(max+10) := e_closure.symm notation `[`:max a `]`:0 := e_closure.of_rel a abbreviation rfl {A : Type} {R : A → A → Type} {a : A} := refl R a end e_closure namespace relation section parameters {A : Type} (R : A → A → Type) local abbreviation T := e_closure R variables ⦃a a' : A⦄ {s : R a a'} {r : T a a} parameter {R} protected definition e_closure.elim [unfold 6] {B : Type} {f : A → B} (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') : f a = f a' := begin induction t, exact e r, reflexivity, exact v_0⁻¹, exact v_0 ⬝ v_1 end definition ap_e_closure_elim_h [unfold 12] {B C : Type} {f : A → B} {g : B → C} (e : Π⦃a a' : A⦄, R a a' → f a = f a') {e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')} (p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') : ap g (e_closure.elim e t) = e_closure.elim e' t := begin induction t, apply p, reflexivity, exact ap_inv g (e_closure.elim e r) ⬝ inverse2 v_0, exact ap_con g (e_closure.elim e r) (e_closure.elim e r') ⬝ (v_0 ◾ v_1) end definition ap_e_closure_elim {B C : Type} {f : A → B} (g : B → C) (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') : ap g (e_closure.elim e t) = e_closure.elim (λa a' r, ap g (e r)) t := ap_e_closure_elim_h e (λa a' s, idp) t definition ap_e_closure_elim_h_eq {B C : Type} {f : A → B} {g : B → C} (e : Π⦃a a' : A⦄, R a a' → f a = f a') {e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')} (p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') : ap_e_closure_elim_h e p t = ap_e_closure_elim g e t ⬝ ap (λx, e_closure.elim x t) (eq_of_homotopy3 p) := begin fapply homotopy3.rec_on p, intro q, esimp at q, induction q, esimp, rewrite eq_of_homotopy3_id end theorem ap_ap_e_closure_elim_h {B C D : Type} {f : A → B} {g : B → C} (h : C → D) (e : Π⦃a a' : A⦄, R a a' → f a = f a') {e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')} (p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') : square (ap (ap h) (ap_e_closure_elim_h e p t)) (ap_e_closure_elim_h e (λa a' s, ap_compose h g (e s)) t) (ap_compose h g (e_closure.elim e t))⁻¹ (ap_e_closure_elim_h e' (λa a' s, (ap (ap h) (p s))⁻¹) t) := begin induction t, { esimp, apply square_of_eq, exact !con.right_inv ⬝ !con.left_inv⁻¹}, { apply ids}, { rewrite [▸*,ap_con (ap h)], refine (transpose !ap_compose_inv)⁻¹ᵛ ⬝h _, rewrite [con_inv,inv_inv,-inv2_inv], exact !ap_inv2 ⬝v square_inv2 v_0}, { rewrite [▸*,ap_con (ap h)], refine (transpose !ap_compose_con)⁻¹ᵛ ⬝h _, rewrite [con_inv,inv_inv,con2_inv], refine !ap_con2 ⬝v square_con2 v_0 v_1}, end theorem ap_ap_e_closure_elim {B C D : Type} {f : A → B} (g : B → C) (h : C → D) (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') : square (ap (ap h) (ap_e_closure_elim g e t)) (ap_e_closure_elim_h e (λa a' s, ap_compose h g (e s)) t) (ap_compose h g (e_closure.elim e t))⁻¹ (ap_e_closure_elim h (λa a' r, ap g (e r)) t) := !ap_ap_e_closure_elim_h open e_closure definition is_equivalence_e_closure : is_equivalence T := begin constructor, intro a, exact rfl, intro a a' t, exact t⁻¹ʳ, intro a a' a'' t t', exact t ⬝r t', end end end relation