/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn The "equivalence closure" of a type-valued relation. A more appropriate intuition is the type of words formed from the relation, and inverses, concatenations and reflexivity -/ import algebra.relation eq2 arity cubical.pathover2 open eq equiv function inductive e_closure {A : Type} (R : A → A → Type) : A → A → Type := | of_rel : Π{a a'} (r : R a a'), e_closure R a a' | of_path : Π{a a'} (pp : a = a'), e_closure R a a' | symm : Π{a a'} (r : e_closure R a a'), e_closure R a' a | trans : Π{a a' a''} (r : e_closure R a a') (r' : e_closure R a' a''), e_closure R a a'' namespace e_closure infix ` ⬝r `:75 := e_closure.trans postfix `⁻¹ʳ`:(max+10) := e_closure.symm notation `[`:max a `]`:0 := e_closure.of_rel a notation `<`:max p `>`:0 := e_closure.of_path _ p abbreviation rfl [constructor] {A : Type} {R : A → A → Type} {a : A} := of_path R (idpath a) end e_closure open e_closure namespace relation section parameters {A : Type} {R : A → A → Type} local abbreviation T := e_closure R variables ⦃a a' a'' : A⦄ {s : R a a'} {r : T a a} {B C : Type} protected definition e_closure.elim [unfold 8] {f : A → B} (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') : f a = f a' := begin induction t with a a' r a a' pp a a' r IH a a' a'' r r' IH₁ IH₂, exact e r, exact ap f pp, exact IH⁻¹, exact IH₁ ⬝ IH₂ end definition ap_e_closure_elim_h [unfold 12] {B C : Type} {f : A → B} {g : B → C} (e : Π⦃a a' : A⦄, R a a' → f a = f a') {e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')} (p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') : ap g (e_closure.elim e t) = e_closure.elim e' t := begin induction t with a a' r a a' pp a a' r IH a a' a'' r r' IH₁ IH₂, apply p, induction pp, reflexivity, exact ap_inv g (e_closure.elim e r) ⬝ inverse2 IH, exact ap_con g (e_closure.elim e r) (e_closure.elim e r') ⬝ (IH₁ ◾ IH₂) end definition ap_e_closure_elim_h_symm [unfold_full] {B C : Type} {f : A → B} {g : B → C} {e : Π⦃a a' : A⦄, R a a' → f a = f a'} {e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')} (p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') : ap_e_closure_elim_h e p t⁻¹ʳ = ap_inv g (e_closure.elim e t) ⬝ (ap_e_closure_elim_h e p t)⁻² := by reflexivity definition ap_e_closure_elim_h_trans [unfold_full] {B C : Type} {f : A → B} {g : B → C} {e : Π⦃a a' : A⦄, R a a' → f a = f a'} {e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')} (p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') (t' : T a' a'') : ap_e_closure_elim_h e p (t ⬝r t') = ap_con g (e_closure.elim e t) (e_closure.elim e t') ⬝ (ap_e_closure_elim_h e p t ◾ ap_e_closure_elim_h e p t') := by reflexivity definition ap_e_closure_elim [unfold 10] {B C : Type} {f : A → B} (g : B → C) (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') : ap g (e_closure.elim e t) = e_closure.elim (λa a' r, ap g (e r)) t := ap_e_closure_elim_h e (λa a' s, idp) t definition ap_e_closure_elim_symm [unfold_full] {B C : Type} {f : A → B} (g : B → C) (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') : ap_e_closure_elim g e t⁻¹ʳ = ap_inv g (e_closure.elim e t) ⬝ (ap_e_closure_elim g e t)⁻² := by reflexivity definition ap_e_closure_elim_trans [unfold_full] {B C : Type} {f : A → B} (g : B → C) (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') (t' : T a' a'') : ap_e_closure_elim g e (t ⬝r t') = ap_con g (e_closure.elim e t) (e_closure.elim e t') ⬝ (ap_e_closure_elim g e t ◾ ap_e_closure_elim g e t') := by reflexivity definition e_closure_elim_eq [unfold 8] {f : A → B} {e e' : Π⦃a a' : A⦄, R a a' → f a = f a'} (p : e ~3 e') (t : T a a') : e_closure.elim e t = e_closure.elim e' t := begin induction t with a a' r a a' pp a a' r IH a a' a'' r r' IH₁ IH₂, apply p, reflexivity, exact IH⁻², exact IH₁ ◾ IH₂ end -- TODO: formulate and prove this without using function extensionality, -- and modify the proofs using this to also not use function extensionality -- strategy: use `e_closure_elim_eq` instead of `ap ... (eq_of_homotopy3 p)` definition ap_e_closure_elim_h_eq {B C : Type} {f : A → B} {g : B → C} (e : Π⦃a a' : A⦄, R a a' → f a = f a') {e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')} (p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') : ap_e_closure_elim_h e p t = ap_e_closure_elim g e t ⬝ ap (λx, e_closure.elim x t) (eq_of_homotopy3 p) := begin fapply homotopy3.rec_on p, intro q, esimp at q, induction q, esimp, rewrite eq_of_homotopy3_id end theorem ap_ap_e_closure_elim_h {B C D : Type} {f : A → B} {g : B → C} (h : C → D) (e : Π⦃a a' : A⦄, R a a' → f a = f a') {e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')} (p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') : square (ap (ap h) (ap_e_closure_elim_h e p t)) (ap_e_closure_elim_h e (λa a' s, ap_compose h g (e s)) t) (ap_compose h g (e_closure.elim e t))⁻¹ (ap_e_closure_elim_h e' (λa a' s, (ap (ap h) (p s))⁻¹) t) := begin induction t with a a' r a a' pp a a' r IH a a' a'' r r' IH₁ IH₂, { esimp, apply square_of_eq, exact !con.right_inv ⬝ !con.left_inv⁻¹}, { induction pp, apply ids}, { rewrite [▸*,ap_con (ap h)], refine (transpose !ap_compose_inv)⁻¹ᵛ ⬝h _, rewrite [con_inv,inv_inv,-inv2_inv], exact !ap_inv2 ⬝v square_inv2 IH}, { rewrite [▸*,ap_con (ap h)], refine (transpose !ap_compose_con)⁻¹ᵛ ⬝h _, rewrite [con_inv,inv_inv,con2_inv], refine !ap_con2 ⬝v square_con2 IH₁ IH₂}, end theorem ap_ap_e_closure_elim {B C D : Type} {f : A → B} (g : B → C) (h : C → D) (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') : square (ap (ap h) (ap_e_closure_elim g e t)) (ap_e_closure_elim_h e (λa a' s, ap_compose h g (e s)) t) (ap_compose h g (e_closure.elim e t))⁻¹ (ap_e_closure_elim h (λa a' r, ap g (e r)) t) := !ap_ap_e_closure_elim_h definition ap_e_closure_elim_h_zigzag {B C D : Type} {f : A → B} {g : B → C} (h : C → D) (e : Π⦃a a' : A⦄, R a a' → f a = f a') {e' : Π⦃a a' : A⦄, R a a' → h (g (f a)) = h (g (f a'))} (p : Π⦃a a' : A⦄ (s : R a a'), ap (h ∘ g) (e s) = e' s) (t : T a a') : ap_e_closure_elim h (λa a' s, ap g (e s)) t ⬝ (ap_e_closure_elim_h e (λa a' s, ap_compose h g (e s)) t)⁻¹ ⬝ ap_e_closure_elim_h e p t = ap_e_closure_elim_h (λa a' s, ap g (e s)) (λa a' s, (ap_compose h g (e s))⁻¹ ⬝ p s) t := begin refine whisker_right (eq_of_square (ap_ap_e_closure_elim g h e t)⁻¹ʰ)⁻¹ _ ⬝ _, refine !con.assoc ⬝ _, apply inv_con_eq_of_eq_con, apply eq_of_square, apply transpose, -- the rest of the proof is almost the same as the proof of ap_ap_e_closure_elim[_h]. -- Is there a connection between these theorems? induction t with a a' r a a' pp a a' r IH a a' a'' r r' IH₁ IH₂, { esimp, apply square_of_eq, apply idp_con}, { induction pp, apply ids}, { rewrite [▸*,ap_con (ap h)], refine (transpose !ap_compose_inv)⁻¹ᵛ ⬝h _, rewrite [con_inv,inv_inv,-inv2_inv], exact !ap_inv2 ⬝v square_inv2 IH}, { rewrite [▸*,ap_con (ap h)], refine (transpose !ap_compose_con)⁻¹ᵛ ⬝h _, rewrite [con_inv,inv_inv,con2_inv], refine !ap_con2 ⬝v square_con2 IH₁ IH₂}, end definition is_equivalence_e_closure : is_equivalence T := begin constructor, intro a, exact rfl, intro a a' t, exact t⁻¹ʳ, intro a a' a'' t t', exact t ⬝r t', end /- dependent elimination -/ variables {P : B → Type} {Q : C → Type} {f : A → B} {g : B → C} {f' : Π(a : A), P (f a)} protected definition e_closure.elimo [unfold 11] (p : Π⦃a a' : A⦄, R a a' → f a = f a') (po : Π⦃a a' : A⦄ (s : R a a'), f' a =[p s] f' a') (t : T a a') : f' a =[e_closure.elim p t] f' a' := begin induction t with a a' r a a' pp a a' r IH a a' a'' r r' IH₁ IH₂, exact po r, induction pp, constructor, exact IH⁻¹ᵒ, exact IH₁ ⬝o IH₂ end definition elimo_symm [unfold_full] (p : Π⦃a a' : A⦄, R a a' → f a = f a') (po : Π⦃a a' : A⦄ (s : R a a'), f' a =[p s] f' a') (t : T a a') : e_closure.elimo p po t⁻¹ʳ = (e_closure.elimo p po t)⁻¹ᵒ := by reflexivity definition elimo_trans [unfold_full] (p : Π⦃a a' : A⦄, R a a' → f a = f a') (po : Π⦃a a' : A⦄ (s : R a a'), f' a =[p s] f' a') (t : T a a') (t' : T a' a'') : e_closure.elimo p po (t ⬝r t') = e_closure.elimo p po t ⬝o e_closure.elimo p po t' := by reflexivity definition ap_e_closure_elimo_h [unfold 12] {g' : Πb, Q (g b)} (p : Π⦃a a' : A⦄, R a a' → f a = f a') (po : Π⦃a a' : A⦄ (s : R a a'), g' (f a) =[p s] g' (f a')) (q : Π⦃a a' : A⦄ (s : R a a'), apd g' (p s) = po s) (t : T a a') : apd g' (e_closure.elim p t) = e_closure.elimo p po t := begin induction t with a a' r a a' pp a a' r IH a a' a'' r r' IH₁ IH₂, apply q, induction pp, reflexivity, esimp [e_closure.elim], exact apd_inv g' (e_closure.elim p r) ⬝ IH⁻²ᵒ, exact apd_con g' (e_closure.elim p r) (e_closure.elim p r') ⬝ (IH₁ ◾o IH₂) end theorem e_closure_elimo_ap {g' : Π(a : A), Q (g (f a))} (p : Π⦃a a' : A⦄, R a a' → f a = f a') (po : Π⦃a a' : A⦄ (s : R a a'), g' a =[ap g (p s)] g' a') (t : T a a') : e_closure.elimo p (λa a' s, pathover_of_pathover_ap Q g (po s)) t = pathover_of_pathover_ap Q g (change_path (ap_e_closure_elim g p t)⁻¹ (e_closure.elimo (λa a' r, ap g (p r)) po t)) := begin induction t with a a' r a a' pp a a' r IH a a' a'' r r' IH₁ IH₂, { reflexivity}, { induction pp; reflexivity}, { rewrite [+elimo_symm, ap_e_closure_elim_symm, IH, con_inv, change_path_con, ▸*, -inv2_inv, change_path_invo, pathover_of_pathover_ap_invo]}, { rewrite [+elimo_trans, ap_e_closure_elim_trans, IH₁, IH₂, con_inv, change_path_con, ▸*, con2_inv, change_path_cono, pathover_of_pathover_ap_cono]}, end end end relation