/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Clive Newstead -/ import .LES_of_homotopy_groups .sphere .complex_hopf open eq is_trunc trunc_index pointed algebra trunc nat is_conn fiber pointed namespace is_trunc -- Lemma 8.3.1 theorem trivial_homotopy_group_of_is_trunc (A : Type*) (n k : ℕ) [is_trunc n A] (H : n ≤ k) : is_contr (πg[k+1] A) := begin apply is_trunc_trunc_of_is_trunc, apply is_contr_loop_of_is_trunc, apply @is_trunc_of_le A n _, rewrite [succ_sub_two_succ k], exact of_nat_le_of_nat H, end -- Lemma 8.3.2 theorem trivial_homotopy_group_of_is_conn (A : Type*) {k n : ℕ} (H : k ≤ n) [is_conn n A] : is_contr (π[k] A) := begin have H3 : is_contr (ptrunc k A), from is_conn_of_le A (of_nat_le_of_nat H), have H4 : is_contr (Ω[k](ptrunc k A)), from !is_trunc_loop_of_is_trunc, apply is_trunc_equiv_closed_rev, { apply equiv_of_pequiv (phomotopy_group_pequiv_loop_ptrunc k A)} end -- Corollary 8.3.3 section open sphere sphere.ops sphere_index theorem homotopy_group_sphere_le (n k : ℕ) (H : k < n) : is_contr (π[k] (S. n)) := begin cases n with n, { exfalso, apply not_lt_zero, exact H}, { have H2 : k ≤ n, from le_of_lt_succ H, apply @(trivial_homotopy_group_of_is_conn _ H2) } end end theorem is_contr_HG_fiber_of_is_connected {A B : Type*} (k n : ℕ) (f : A →* B) [H : is_conn_fun n f] (H2 : k ≤ n) : is_contr (π[k] (pfiber f)) := @(trivial_homotopy_group_of_is_conn (pfiber f) H2) (H pt) /- Corollaries of the LES of homotopy groups -/ local attribute comm_group.to_group [coercion] local attribute is_equiv_tinverse [instance] open prod chain_complex group fin equiv function is_equiv lift /- Because of the construction of the LES this proof only gives us this result when A and B live in the same universe (because Lean doesn't have universe cumulativity). However, below we also proof that it holds for A and B in arbitrary universes. -/ theorem is_equiv_π_of_is_connected'.{u} {A B : pType.{u}} {n k : ℕ} (f : A →* B) (H2 : k ≤ n) [H : is_conn_fun n f] : is_equiv (π→[k] f) := begin cases k with k, { /- k = 0 -/ change (is_equiv (trunc_functor 0 f)), apply is_equiv_trunc_functor_of_is_conn_fun, refine is_conn_fun_of_le f (zero_le_of_nat n)}, { /- k > 0 -/ have H2' : k ≤ n, from le.trans !self_le_succ H2, exact @is_equiv_of_trivial _ (LES_of_homotopy_groups f) _ (is_exact_LES_of_homotopy_groups f (k, 2)) (is_exact_LES_of_homotopy_groups f (succ k, 0)) (@is_contr_HG_fiber_of_is_connected A B k n f H H2') (@is_contr_HG_fiber_of_is_connected A B (succ k) n f H H2) (@pgroup_of_group _ (group_LES_of_homotopy_groups f k 0) idp) (@pgroup_of_group _ (group_LES_of_homotopy_groups f k 1) idp) (homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun f (k, 0)))}, end theorem is_equiv_π_of_is_connected.{u v} {A : pType.{u}} {B : pType.{v}} {n k : ℕ} (f : A →* B) (H2 : k ≤ n) [H : is_conn_fun n f] : is_equiv (π→[k] f) := begin have π→*[k] pdown.{v u} ∘* π→*[k] (plift_functor f) ∘* π→*[k] pup.{u v} ~* π→*[k] f, begin refine pwhisker_left _ !phomotopy_group_functor_compose⁻¹* ⬝* _, refine !phomotopy_group_functor_compose⁻¹* ⬝* _, apply phomotopy_group_functor_phomotopy, apply plift_functor_phomotopy end, have π→[k] pdown.{v u} ∘ π→[k] (plift_functor f) ∘ π→[k] pup.{u v} ~ π→[k] f, from this, apply is_equiv.homotopy_closed, rotate 1, { exact this}, { do 2 apply is_equiv_compose, { apply is_equiv_homotopy_group_functor, apply to_is_equiv !equiv_lift}, { refine @(is_equiv_π_of_is_connected' _ H2) _, apply is_conn_fun_lift_functor}, { apply is_equiv_homotopy_group_functor, apply to_is_equiv !equiv_lift⁻¹ᵉ}} end definition π_equiv_π_of_is_connected {A B : Type*} {n k : ℕ} (f : A →* B) (H2 : k ≤ n) [H : is_conn_fun n f] : π*[k] A ≃* π*[k] B := pequiv_of_pmap (π→*[k] f) (is_equiv_π_of_is_connected f H2) -- TODO: prove this for A and B in different universe levels theorem is_surjective_π_of_is_connected.{u} {A B : pType.{u}} (n : ℕ) (f : A →* B) [H : is_conn_fun n f] : is_surjective (π→[n + 1] f) := @is_surjective_of_trivial _ (LES_of_homotopy_groups f) _ (is_exact_LES_of_homotopy_groups f (n, 2)) (@is_contr_HG_fiber_of_is_connected A B n n f H !le.refl) /- Theorem 8.8.3: Whitehead's principle -/ definition whiteheads_principle (n : ℕ₋₂) {A B : Type} [HA : is_trunc n A] [HB : is_trunc n B] (f : A → B) (H' : is_equiv (trunc_functor 0 f)) (H : Πa k, is_equiv (π→*[k + 1] (pmap_of_map f a))) : is_equiv f := begin revert A B HA HB f H' H, induction n with n IH: intros, { apply is_equiv_of_is_contr}, have Πa, is_equiv (Ω→ (pmap_of_map f a)), begin intro a, apply IH, do 2 (esimp; exact _), { rexact H a 0}, intro p k, have is_equiv (π→*[k + 1] (Ω→(pmap_of_map f a))), from is_equiv_phomotopy_group_functor_ap1 (k+1) (pmap_of_map f a), have Π(b : A) (p : a = b), is_equiv (pmap.to_fun (π→*[k + 1] (pmap_of_map (ap f) p))), begin intro b p, induction p, apply is_equiv.homotopy_closed, exact this, refine phomotopy_group_functor_phomotopy _ _, apply ap1_pmap_of_map end, have is_equiv (phomotopy_group_pequiv _ (pequiv_of_eq_pt (!idp_con⁻¹ : ap f p = Ω→ (pmap_of_map f a) p)) ∘ pmap.to_fun (π→*[k + 1] (pmap_of_map (ap f) p))), begin apply is_equiv_compose, exact this a p, end, apply is_equiv.homotopy_closed, exact this, refine !phomotopy_group_functor_compose⁻¹* ⬝* _, apply phomotopy_group_functor_phomotopy, fapply phomotopy.mk, { esimp, intro q, refine !idp_con⁻¹}, { esimp, refine !idp_con⁻¹}, end, apply is_equiv_of_is_equiv_ap1_of_is_equiv_trunc end end is_trunc