/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.ring Authors: Jeremy Avigad, Leonardo de Moura Structures with multiplicative and additive components, including semirings, rings, and fields. The development is modeled after Isabelle's library. -/ import logic.eq logic.connectives import data.unit data.sigma data.prod import algebra.function algebra.binary algebra.group open eq eq.ops namespace algebra variable {A : Type} /- auxiliary classes -/ structure distrib [class] (A : Type) extends has_mul A, has_add A := (distrib_left : ∀a b c, mul a (add b c) = add (mul a b) (mul a c)) (distrib_right : ∀a b c, mul (add a b) c = add (mul a c) (mul b c)) theorem distrib_left [s : distrib A] (a b c : A) : a * (b + c) = a * b + a * c := !distrib.distrib_left theorem distrib_right [s: distrib A] (a b c : A) : (a + b) * c = a * c + b * c := !distrib.distrib_right structure mul_zero [class] (A : Type) extends has_mul A, has_zero A := (mul_zero_left : ∀a, mul zero a = zero) (mul_zero_right : ∀a, mul a zero = zero) theorem mul_zero_left [s : mul_zero A] (a : A) : 0 * a = 0 := !mul_zero.mul_zero_left theorem mul_zero_right [s : mul_zero A] (a : A) : a * 0 = 0 := !mul_zero.mul_zero_right structure zero_ne_one_class [class] (A : Type) extends has_zero A, has_one A := (zero_ne_one : zero ≠ one) theorem zero_ne_one [s: zero_ne_one_class A] : 0 ≠ 1 := !zero_ne_one_class.zero_ne_one /- semiring -/ structure semiring [class] (A : Type) extends add_comm_monoid A, monoid A, distrib A, mul_zero A, zero_ne_one_class A structure comm_semiring [class] (A : Type) extends semiring A, comm_semigroup A /- abstract divisibility -/ structure has_dvd [class] (A : Type) extends has_mul A := (dvd : A → A → Prop) (dvd_intro : ∀a b c, mul a b = c → dvd a c) (dvd_imp_exists : ∀ a b, dvd a b → ∃c, mul a c = b) definition dvd [s : has_dvd A] (a b : A) : Prop := has_dvd.dvd a b infix `|` := dvd theorem dvd_intro [s : has_dvd A] {a b c : A} : a * b = c → a | c := !has_dvd.dvd_intro theorem dvd_imp_exists [s : has_dvd A] {a b : A} : a | b → ∃c, a * c = b := !has_dvd.dvd_imp_exists theorem dvd_elim [s : has_dvd A] {P : Prop} {a b : A} (H₁ : a | b) (H₂ : ∀c, a * c = b → P) : P := exists_elim (dvd_imp_exists H₁) H₂ structure comm_semiring_dvd [class] (A : Type) extends comm_semiring A, has_dvd A section comm_semiring_dvd variables [s : comm_semiring_dvd A] (a b c : A) include s theorem dvd_refl : a | a := dvd_intro (!mul_right_id) theorem dvd_trans {a b c : A} (H₁ : a | b) (H₂ : b | c) : a | c := dvd_elim H₁ (take d, assume H₃ : a * d = b, dvd_elim H₂ (take e, assume H₄ : b * e = c, @dvd_intro _ _ _ (d * e) _ (calc a * (d * e) = (a * d) * e : mul_assoc ... = b * e : H₃ ... = c : H₄))) theorem zero_dvd {H : 0 | a} : a = 0 := dvd_elim H (take c, assume H' : 0 * c = a, (H')⁻¹ ⬝ !mul_zero_left) theorem dvd_zero : a | 0 := dvd_intro !mul_zero_right theorem one_dvd : 1 | a := dvd_intro !mul_left_id theorem dvd_mul_right : a | a * b := dvd_intro rfl theorem dvd_mul_left : a | b * a := !mul_comm ▸ !dvd_mul_right theorem dvd_imp_dvd_mul_right {a b : A} (H : a | b) (c : A) : a | b * c := dvd_elim H (take d, assume H₁ : a * d = b, dvd_intro (calc a * (d * c) = a * d * c : mul_assoc ... = b * c : H₁)) theorem dvd_imp_dvd_mul_left {a b : A} (H : a | b) (c : A) : a | c * b := !mul_comm ▸ (dvd_imp_dvd_mul_right H _) theorem mul_dvd_mono {a b c d : A} (dvd_ab : a | b) (dvd_cd : c | d) : a * c | b * d := dvd_elim dvd_ab (take e, assume Haeb : a * e = b, dvd_elim dvd_cd (take f, assume Hcfd : c * f = d, dvd_intro (calc a * c * (e * f) = a * (c * (e * f)) : mul_assoc ... = a * (e * (c * f)) : mul_left_comm ... = a * e * (c * f) : mul_assoc ... = b * (c * f) : Haeb ... = b * d : Hcfd))) theorem mul_dvd_imp_dvd_left {a b c : A} (H : a * b | c) : a | c := dvd_elim H (take d, assume Habdc : a * b * d = c, dvd_intro (!mul_assoc⁻¹ ⬝ Habdc)) theorem mul_dvd_imp_dvd_right {a b c : A} (H : a * b | c) : b | c := mul_dvd_imp_dvd_left (!mul_comm ▸ H) theorem dvd_add {a b c : A} (Hab : a | b) (Hac : a | c) : a | b + c := dvd_elim Hab (take d, assume Hadb : a * d = b, dvd_elim Hac (take e, assume Haec : a * e = c, dvd_intro (show a * (d + e) = b + c, from Hadb ▸ Haec ▸ !distrib_left))) end comm_semiring_dvd /- ring -/ structure ring [class] (A : Type) extends add_comm_group A, monoid A, distrib A, zero_ne_one_class A definition ring.to_semiring [instance] [s : ring A] : semiring A := semiring.mk ring.add ring.add_assoc !ring.zero ring.add_left_id add_right_id -- note: we've shown that add_right_id follows from add_left_id in add_comm_group ring.add_comm ring.mul ring.mul_assoc !ring.one ring.mul_left_id ring.mul_right_id ring.distrib_left ring.distrib_right (take a, have H : 0 * a + 0 = 0 * a + 0 * a, from calc 0 * a + 0 = 0 * a : add_right_id ... = (0 + 0) * a : add_right_id ... = 0 * a + 0 * a : ring.distrib_right, show 0 * a = 0, from (add_left_cancel H)⁻¹) (take a, have H : a * 0 + 0 = a * 0 + a * 0, from calc a * 0 + 0 = a * 0 : add_right_id ... = a * (0 + 0) : add_right_id ... = a * 0 + a * 0 : ring.distrib_left, show a * 0 = 0, from (add_left_cancel H)⁻¹) !ring.zero_ne_one section variables [s : ring A] (a b c d e : A) include s theorem neg_mul_left : -(a * b) = -a * b := neg_unique (calc a * b + -a * b = (a + -a) * b : distrib_right ... = 0 * b : add_right_inv ... = 0 : mul_zero_left) theorem neg_mul_right : -(a * b) = a * -b := neg_unique (calc a * b + a * -b = a * (b + -b) : distrib_left ... = a * 0 : add_right_inv ... = 0 : mul_zero_right) theorem neg_mul_neg : -a * -b = a * b := calc -a * -b = -(a * -b) : neg_mul_left ... = - -(a * b) : neg_mul_right ... = a * b : neg_neg theorem neg_mul_comm : -a * b = a * -b := !neg_mul_left⁻¹ ⬝ !neg_mul_right theorem minus_distrib_left : a * (b - c) = a * b - a * c := calc a * (b - c) = a * b + a * -c : distrib_left ... = a * b + - (a * c) : neg_mul_right ... = a * b - a * c : rfl theorem minus_distrib_right : (a - b) * c = a * c - b * c := calc (a - b) * c = a * c + -b * c : distrib_right ... = a * c + - (b * c) : neg_mul_left ... = a * c - b * c : rfl -- TODO: can calc mode be improved to make this easier? -- TODO: there is also the other direction. It will be easier when we -- have the simplifier. theorem eq_add_iff1 : a * e + c = b * e + d ↔ (a - b) * e + c = d := calc a * e + c = b * e + d ↔ a * e + c = d + b * e : !add_comm ▸ !iff.refl ... ↔ a * e + c - b * e = d : iff.symm !minus_eq_iff_eq_add ... ↔ a * e - b * e + c = d : !minus_add_right_comm ▸ !iff.refl ... ↔ (a - b) * e + c = d : !minus_distrib_right ▸ !iff.refl end structure comm_ring [class] (A : Type) extends ring A, comm_semigroup A definition comm_ring.to_comm_semiring [instance] [s : comm_ring A] : comm_semiring A := comm_semiring.mk has_add.add add_assoc !has_zero.zero add_left_id add_right_id add_comm has_mul.mul mul_assoc !has_one.one mul_left_id mul_right_id distrib_left distrib_right mul_zero_left mul_zero_right zero_ne_one mul_comm section variables [s : comm_ring A] (a b c d e : A) include s -- TODO: wait for the simplifier theorem square_minus_square_eq : a * a - b * b = (a + b) * (a - b) := sorry theorem square_minus_one_eq : a * a - 1 = (a + 1) * (a - 1) := !mul_right_id ▸ !square_minus_square_eq end structure comm_ring_dvd [class] (A : Type) extends comm_ring A, has_dvd A definition comm_ring_dvd.to_comm_semiring_dvd [instance] [s : comm_ring_dvd A] : comm_semiring_dvd A := comm_semiring_dvd.mk has_add.add add_assoc !has_zero.zero add_left_id add_right_id add_comm has_mul.mul mul_assoc !has_one.one mul_left_id mul_right_id distrib_left distrib_right mul_zero_left mul_zero_right zero_ne_one mul_comm dvd (@dvd_intro A s) (@dvd_imp_exists A s) section variables [s : comm_ring_dvd A] (a b c d e : A) include s theorem dvd_neg_iff : a | -b ↔ a | b := iff.intro (assume H : a | -b, dvd_elim H (take c, assume H' : a * c = -b, dvd_intro (calc a * -c = -(a * c) : neg_mul_right ... = -(-b) : H' ... = b : neg_neg))) (assume H : a | b, dvd_elim H (take c, assume H' : a * c = b, dvd_intro (calc a * -c = -(a * c) : neg_mul_right ... = -b : H'))) theorem neg_dvd_iff : -a | b ↔ a | b := iff.intro (assume H : -a | b, dvd_elim H (take c, assume H' : -a * c = b, dvd_intro (calc a * -c = -a * c : neg_mul_comm ... = b : H'))) (assume H : a | b, dvd_elim H (take c, assume H' : a * c = b, dvd_intro (calc -a * -c = a * c : neg_mul_neg ... = b : H'))) theorem dvd_diff (H₁ : a | b) (H₂ : a | c) : a | (b - c) := dvd_add H₁ (iff.elim_right !dvd_neg_iff H₂) end /- integral domains -/ -- TODO: some properties here may extend to cancellative semirings. It is worth the effort? structure no_zero_divisors [class] (A : Type) extends has_mul A, has_zero A := (eq_zero_or_eq_zero_of_mul_eq_zero : ∀a b, mul a b = zero → a = zero ∨ b = zero) theorem eq_zero_or_eq_zero_of_mul_eq_zero {A : Type} [s : no_zero_divisors A] {a b : A} (H : a * b = 0) : a = 0 ∨ b = 0 := !no_zero_divisors.eq_zero_or_eq_zero_of_mul_eq_zero H structure integral_domain [class] (A : Type) extends comm_ring_dvd A, no_zero_divisors A section variables [s : integral_domain A] (a b c d e : A) include s theorem mul_ne_zero_of_ne_zero_ne_zero {a b : A} (H1 : a ≠ 0) (H2 : b ≠ 0) : a * b ≠ 0 := assume H : a * b = 0, or.elim (eq_zero_or_eq_zero_of_mul_eq_zero H) (assume H3, H1 H3) (assume H4, H2 H4) theorem mul.cancel_right {a b c : A} (Ha : a ≠ 0) (H : b * a = c * a) : b = c := have H1 : b * a - c * a = 0, from iff.mp !eq_iff_minus_eq_zero H, have H2 : (b - c) * a = 0, from eq.trans !minus_distrib_right H1, have H3 : b - c = 0, from or.resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero H2) Ha, iff.elim_right !eq_iff_minus_eq_zero H3 theorem mul.cancel_left {a b c : A} (Ha : a ≠ 0) (H : a * b = a * c) : b = c := have H1 : a * b - a * c = 0, from iff.mp !eq_iff_minus_eq_zero H, have H2 : a * (b - c) = 0, from eq.trans !minus_distrib_left H1, have H3 : b - c = 0, from or.resolve_right (eq_zero_or_eq_zero_of_mul_eq_zero H2) Ha, iff.elim_right !eq_iff_minus_eq_zero H3 -- TODO: do we want the iff versions? -- TODO: wait for simplifier theorem square_eq_square_iff (a b : A) : a * a = b * b ↔ a = b ∨ a = -b := sorry theorem square_eq_one_iff (a : A) : a * a = 1 ↔ a = 1 ∨ a = -1 := sorry -- TODO: c - b * c → c = 0 ∨ b = 1 and variants theorem dvd_of_mul_dvd_mul_left {a b c : A} (Ha : a ≠ 0) (Hdvd : a * b | a * c) : b | c := dvd_elim Hdvd (take d, assume H : a * b * d = a * c, have H1 : b * d = c, from mul.cancel_left Ha (!mul_assoc ▸ H), dvd_intro H1) theorem dvd_of_mul_dvd_mul_right {a b c : A} (Ha : a ≠ 0) (Hdvd : b * a | c * a) : b | c := dvd_elim Hdvd (take d, assume H : b * a * d = c * a, have H1 : b * d * a = c * a, from eq.trans !mul_right_comm H, have H2 : b * d = c, from mul.cancel_right Ha H1, dvd_intro H2) end end algebra