-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import macros import subtype import tactic using subtype namespace num theorem inhabited_ind : inhabited ind -- We use as the witness for non-emptiness, the value w in ind that is not convered by f. := obtain f His, from infinity, obtain w Hw, from and_elimr His, inhabited_intro w definition S := ε (inhabited_ex_intro infinity) (λ f, injective f ∧ non_surjective f) definition Z := ε inhabited_ind (λ y, ∀ x, ¬ S x = y) theorem injective_S : injective S := and_eliml (exists_to_eps infinity) theorem non_surjective_S : non_surjective S := and_elimr (exists_to_eps infinity) theorem S_ne_Z (i : ind) : S i ≠ Z := obtain w Hw, from non_surjective_S, eps_ax inhabited_ind w Hw i definition N (i : ind) : Bool := ∀ P, P Z → (∀ x, P x → P (S x)) → P i theorem N_Z : N Z := λ P Hz Hi, Hz theorem N_S {i : ind} (H : N i) : N (S i) := λ P Hz Hi, Hi i (H P Hz Hi) theorem N_smallest : ∀ P : ind → Bool, P Z → (∀ x, P x → P (S x)) → (∀ i, N i → P i) := λ P Hz Hi i Hni, Hni P Hz Hi definition num := subtype ind N theorem inhab : inhabited num := subtype_inhabited (exists_intro Z N_Z) definition zero : num := abst Z inhab theorem zero_pred : N Z := N_Z definition succ (n : num) : num := abst (S (rep n)) inhab theorem succ_pred (n : num) : N (S (rep n)) := have N_n : N (rep n), from P_rep n, show N (S (rep n)), from N_S N_n theorem succ_inj {a b : num} : succ a = succ b → a = b := assume Heq1 : succ a = succ b, have Heq2 : S (rep a) = S (rep b), from abst_inj inhab (succ_pred a) (succ_pred b) Heq1, have rep_eq : (rep a) = (rep b), from injective_S (rep a) (rep b) Heq2, show a = b, from rep_inj rep_eq theorem succ_nz (a : num) : succ a ≠ zero := assume R : succ a = zero, have Heq1 : S (rep a) = Z, from abst_inj inhab (succ_pred a) zero_pred R, show false, from absurd Heq1 (S_ne_Z (rep a)) theorem induction {P : num → Bool} (H1 : P zero) (H2 : ∀ n, P n → P (succ n)) : ∀ a, P a := take a, let Q := λ x, N x ∧ P (abst x inhab) in have QZ : Q Z, from and_intro zero_pred H1, have QS : ∀ x, Q x → Q (S x), from take x, assume Qx, have Hp1 : P (succ (abst x inhab)), from H2 (abst x inhab) (and_elimr Qx), have Hp2 : P (abst (S (rep (abst x inhab))) inhab), from Hp1, have Nx : N x, from and_eliml Qx, have rep_eq : rep (abst x inhab) = x, from rep_abst inhab x Nx, show Q (S x), from and_intro (N_S Nx) (subst Hp2 rep_eq), have Qa : P (abst (rep a) inhab), from and_elimr (N_smallest Q QZ QS (rep a) (P_rep a)), have abst_eq : abst (rep a) inhab = a, from abst_rep inhab a, show P a, from subst Qa abst_eq theorem induction_on {P : num → Bool} (a : num) (H1 : P zero) (H2 : ∀ n, P n → P (succ n)) : P a := induction H1 H2 a theorem sn_ne_n (n : num) : succ n ≠ n := induction_on n (succ_nz zero) (λ (n : num) (iH : succ n ≠ n), not_intro (assume R : succ (succ n) = succ n, absurd (succ_inj R) iH)) set_opaque num true set_opaque Z true set_opaque S true set_opaque zero true set_opaque succ true definition lt (m n : num) := ∃ P, (∀ i, P (succ i) → P i) ∧ P m ∧ ¬ P n infix 50 < : lt theorem lt_elim {m n : num} {B : Bool} (H1 : m < n) (H2 : ∀ (P : num → Bool), (∀ i, P (succ i) → P i) → P m → ¬ P n → B) : B := obtain P Pdef, from H1, H2 P (and_eliml Pdef) (and_eliml (and_elimr Pdef)) (and_elimr (and_elimr Pdef)) theorem lt_intro {m n : num} {P : num → Bool} (H1 : ∀ i, P (succ i) → P i) (H2 : P m) (H3 : ¬ P n) : m < n := exists_intro P (and_intro H1 (and_intro H2 H3)) set_opaque lt true theorem lt_nrefl (n : num) : ¬ (n < n) := not_intro (assume N : n < n, lt_elim N (λ P Pred Pn nPn, absurd Pn nPn)) theorem lt_succ {m n : num} : succ m < n → m < n := assume H : succ m < n, lt_elim H (λ (P : num → Bool) (Pred : ∀ i, P (succ i) → P i) (Psm : P (succ m)) (nPn : ¬ P n), have Pm : P m, from Pred m Psm, show m < n, from lt_intro Pred Pm nPn) theorem not_lt_zero (n : num) : ¬ (n < zero) := induction_on n (show ¬ (zero < zero), from lt_nrefl zero) (λ (n : num) (iH : ¬ (n < zero)), show ¬ (succ n < zero), from not_intro (assume N : succ n < zero, have nLTzero : n < zero, from lt_succ N, show false, from absurd nLTzero iH)) theorem zero_lt_succ_zero : zero < succ zero := let P : num → Bool := λ x, x = zero in have Ppred : ∀ i, P (succ i) → P i, from take i, assume Ps : P (succ i), have si_eq_z : succ i = zero, from Ps, have si_ne_z : succ i ≠ zero, from succ_nz i, show P i, from absurd_elim (P i) si_eq_z (succ_nz i), have Pz : P zero, from (refl zero), have nPs : ¬ P (succ zero), from succ_nz zero, show zero < succ zero, from lt_intro Ppred Pz nPs theorem succ_mono_lt {m n : num} : m < n → succ m < succ n := assume H : m < n, lt_elim H (λ (P : num → Bool) (Ppred : ∀ i, P (succ i) → P i) (Pm : P m) (nPn : ¬ P n), let Q : num → Bool := λ x, x = succ m ∨ P x in have Qpred : ∀ i, Q (succ i) → Q i, from take i, assume Qsi : Q (succ i), or_elim Qsi (assume Hl : succ i = succ m, have Him : i = m, from succ_inj Hl, have Pi : P i, from subst Pm (symm Him), or_intror (i = succ m) Pi) (assume Hr : P (succ i), have Pi : P i, from Ppred i Hr, or_intror (i = succ m) Pi), have Qsm : Q (succ m), from or_introl (refl (succ m)) (P (succ m)), have nQsn : ¬ Q (succ n), from not_intro (assume R : Q (succ n), or_elim R (assume Hl : succ n = succ m, absurd Pm (subst nPn (succ_inj Hl))) (assume Hr : P (succ n), absurd (Ppred n Hr) nPn)), show succ m < succ n, from lt_intro Qpred Qsm nQsn) theorem lt_to_lt_succ {m n : num} : m < n → m < succ n := assume H : m < n, lt_elim H (λ (P : num → Bool) (Ppred : ∀ i, P (succ i) → P i) (Pm : P m) (nPn : ¬ P n), have nPsn : ¬ P (succ n), from not_intro (assume R : P (succ n), absurd (Ppred n R) nPn), show m < succ n, from lt_intro Ppred Pm nPsn) theorem n_lt_succ_n (n : num) : n < succ n := induction_on n zero_lt_succ_zero (λ (n : num) (iH : n < succ n), succ_mono_lt iH) theorem lt_to_neq {m n : num} : m < n → m ≠ n := assume H : m < n, lt_elim H (λ (P : num → Bool) (Ppred : ∀ i, P (succ i) → P i) (Pm : P m) (nPn : ¬ P n), not_intro (assume R : m = n, absurd Pm (subst nPn (symm R)))) theorem eq_to_not_lt {m n : num} : m = n → ¬ (m < n) := assume Heq : m = n, not_intro (assume R : m < n, absurd (subst R Heq) (lt_nrefl n)) theorem zero_lt_succ_n {n : num} : zero < succ n := induction_on n zero_lt_succ_zero (λ (n : num) (iH : zero < succ n), lt_to_lt_succ iH) theorem lt_succ_to_disj {m n : num} : m < succ n → m = n ∨ m < n := assume H : m < succ n, lt_elim H (λ (P : num → Bool) (Ppred : ∀ i, P (succ i) → P i) (Pm : P m) (nPsn : ¬ P (succ n)), or_elim (em (m = n)) (assume Heq : m = n, or_introl Heq (m < n)) (assume Hne : m ≠ n, let Q : num → Bool := λ x, x ≠ n ∧ P x in have Qpred : ∀ i, Q (succ i) → Q i, from take i, assume Hsi : Q (succ i), have H1 : succ i ≠ n, from and_eliml Hsi, have Psi : P (succ i), from and_elimr Hsi, have Pi : P i, from Ppred i Psi, have neq : i ≠ n, from not_intro (assume N : i = n, absurd (subst Psi N) nPsn), and_intro neq Pi, have Qm : Q m, from and_intro Hne Pm, have nQn : ¬ Q n, from not_intro (assume N : n ≠ n ∧ P n, absurd (refl n) (and_eliml N)), show m = n ∨ m < n, from or_intror (m = n) (lt_intro Qpred Qm nQn))) theorem disj_to_lt_succ {m n : num} : m = n ∨ m < n → m < succ n := assume H : m = n ∨ m < n, or_elim H (λ Hl : m = n, have H1 : n < succ n, from n_lt_succ_n n, show m < succ n, from substp (λ x, x < succ n) H1 (symm Hl)) -- TODO, improve elaborator to catch this case (λ Hr : m < n, lt_to_lt_succ Hr) theorem lt_succ_ne_to_lt {m n : num} : m < succ n → m ≠ n → m < n := assume (H1 : m < succ n) (H2 : m ≠ n), resolve1 (lt_succ_to_disj H1) H2 definition simp_rec_rel {A : (Type U)} (fn : num → A) (x : A) (f : A → A) (n : num) := fn zero = x ∧ (∀ m, m < n → fn (succ m) = f (fn m)) definition simp_rec_fun {A : (Type U)} (x : A) (f : A → A) (n : num) : num → A := ε (inhabited_fun num (inhabited_intro x)) (λ fn : num → A, simp_rec_rel fn x f n) -- The basic idea is: -- (simp_rec_fun x f n) returns a function that 'works' for all m < n -- We have that n < succ n, then we can define (simp_rec x f n) as: definition simp_rec {A : (Type U)} (x : A) (f : A → A) (n : num) : A := simp_rec_fun x f (succ n) n theorem simp_rec_lemma1 {A : (Type U)} (x : A) (f : A → A) (n : num) : (∃ fn, simp_rec_rel fn x f n) ↔ (simp_rec_fun x f n zero = x ∧ ∀ m, m < n → simp_rec_fun x f n (succ m) = f (simp_rec_fun x f n m)) := iff_intro (assume Hl : (∃ fn, simp_rec_rel fn x f n), obtain (fn : num → A) (Hfn : simp_rec_rel fn x f n), from Hl, have inhab : inhabited (num → A), from (inhabited_fun num (inhabited_intro x)), show simp_rec_rel (simp_rec_fun x f n) x f n, from @eps_ax (num → A) inhab (λ fn, simp_rec_rel fn x f n) fn Hfn) (assume Hr, have H1 : simp_rec_rel (simp_rec_fun x f n) x f n, from Hr, show (∃ fn, simp_rec_rel fn x f n), from exists_intro (simp_rec_fun x f n) H1) theorem simp_rec_lemma2 {A : (Type U)} (x : A) (f : A → A) (n : num) : ∃ fn, simp_rec_rel fn x f n := induction_on n (let fn : num → A := λ n, x in have fz : fn zero = x, from refl (fn zero), have fs : ∀ m, m < zero → fn (succ m) = f (fn m), from take m, assume Hmn : m < zero, absurd_elim (fn (succ m) = f (fn m)) Hmn (not_lt_zero m), show ∃ fn, simp_rec_rel fn x f zero, from exists_intro fn (and_intro fz fs)) (λ (n : num) (iH : ∃ fn, simp_rec_rel fn x f n), obtain (fn : num → A) (Hfn : simp_rec_rel fn x f n), from iH, let fn1 : num → A := λ m, if succ n = m then f (fn n) else fn m in have f1z : fn1 zero = x, from calc fn1 zero = if succ n = zero then f (fn n) else fn zero : refl (fn1 zero) ... = if false then f (fn n) else fn zero : { eqf_intro (succ_nz n) } ... = fn zero : if_false _ _ ... = x : and_eliml Hfn, have f1s : ∀ m, m < succ n → fn1 (succ m) = f (fn1 m), from take m, assume Hlt : m < succ n, or_elim (lt_succ_to_disj Hlt) (assume Hl : m = n, have Hrw1 : (succ n = succ m) ↔ true, from eqt_intro (symm (congr2 succ Hl)), have Haux1 : (succ n = m) ↔ false, from eqf_intro (subst (sn_ne_n m) Hl), have Hrw2 : fn n = fn1 m, from symm (calc fn1 m = if succ n = m then f (fn n) else fn m : refl (fn1 m) ... = if false then f (fn n) else fn m : { Haux1 } ... = fn m : if_false _ _ ... = fn n : congr2 fn Hl), calc fn1 (succ m) = if succ n = succ m then f (fn n) else fn (succ m) : refl (fn1 (succ m)) ... = if true then f (fn n) else fn (succ m) : { Hrw1 } ... = f (fn n) : if_true _ _ ... = f (fn1 m) : { Hrw2 }) (assume Hr : m < n, have Haux1 : fn (succ m) = f (fn m), from (and_elimr Hfn m Hr), have Hrw1 : (succ n = succ m) ↔ false, from eqf_intro (not_intro (assume N : succ n = succ m, have nLt : ¬ m < n, from eq_to_not_lt (symm (succ_inj N)), absurd Hr nLt)), have Haux2 : m < succ n, from lt_to_lt_succ Hr, have Haux3 : (succ n = m) ↔ false, from eqf_intro (ne_symm (lt_to_neq Haux2)), have Hrw2 : fn m = fn1 m, from symm (calc fn1 m = if succ n = m then f (fn n) else fn m : refl (fn1 m) ... = if false then f (fn n) else fn m : { Haux3 } ... = fn m : if_false _ _), calc fn1 (succ m) = if succ n = succ m then f (fn n) else fn (succ m) : refl (fn1 (succ m)) ... = if false then f (fn n) else fn (succ m) : { Hrw1 } ... = fn (succ m) : if_false _ _ ... = f (fn m) : Haux1 ... = f (fn1 m) : { Hrw2 }), show ∃ fn, simp_rec_rel fn x f (succ n), from exists_intro fn1 (and_intro f1z f1s)) set_opaque simp_rec_rel true set_opaque simp_rec_fun true set_opaque simp_rec true end definition num := num::num