/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Discrete category -/ import ..groupoid types.bool ..nat_trans open eq is_trunc iso bool functor nat_trans namespace category definition precategory_of_1_type [constructor] (A : Type) [H : is_trunc 1 A] : precategory A := @precategory.mk _ _ (@is_trunc_eq _ _ H) (λ (a b c : A) (p : b = c) (q : a = b), q ⬝ p) (λ (a : A), refl a) (λ (a b c d : A) (p : c = d) (q : b = c) (r : a = b), con.assoc r q p) (λ (a b : A) (p : a = b), con_idp p) (λ (a b : A) (p : a = b), idp_con p) definition groupoid_of_1_type [constructor] (A : Type) [H : is_trunc 1 A] : groupoid A := groupoid.mk !precategory_of_1_type (λ (a b : A) (p : a = b), is_iso.mk _ !con.right_inv !con.left_inv) definition Precategory_of_1_type [constructor] (A : Type) [H : is_trunc 1 A] : Precategory := precategory.Mk (precategory_of_1_type A) definition Groupoid_of_1_type [constructor] (A : Type) [H : is_trunc 1 A] : Groupoid := groupoid.Mk _ (groupoid_of_1_type A) definition discrete_precategory [constructor] (A : Type) [H : is_hset A] : precategory A := precategory_of_1_type A definition discrete_groupoid [constructor] (A : Type) [H : is_hset A] : groupoid A := groupoid_of_1_type A definition Discrete_precategory [constructor] (A : Type) [H : is_hset A] : Precategory := precategory.Mk (discrete_precategory A) definition Discrete_groupoid [constructor] (A : Type) [H : is_hset A] : Groupoid := groupoid.Mk _ (discrete_groupoid A) definition c2 [constructor] : Precategory := Discrete_precategory bool definition c2_functor [constructor] (C : Precategory) (x y : C) : c2 ⇒ C := functor.mk (bool.rec x y) (bool.rec (bool.rec (λf, id) (by contradiction)) (bool.rec (by contradiction) (λf, id))) abstract (bool.rec idp idp) end abstract begin intro b₁ b₂ b₃ g f, induction b₁: induction b₂: induction b₃: esimp at *: try contradiction: exact !id_id⁻¹ end end definition c2_functor_eta {C : Precategory} (F : c2 ⇒ C) : c2_functor C (to_fun_ob F ff) (to_fun_ob F tt) = F := begin fapply functor_eq: esimp, { intro b, induction b: reflexivity}, { intro b₁ b₂ p, induction p, induction b₁: esimp; rewrite [id_leftright]; exact !respect_id⁻¹} end definition c2_nat_trans [constructor] {C : Precategory} {x y u v : C} (f : x ⟶ u) (g : y ⟶ v) : c2_functor C x y ⟹ c2_functor C u v := begin fapply nat_trans.mk: esimp, { intro b, induction b, exact f, exact g}, { intro b₁ b₂ p, induction p, induction b₁: esimp: apply id_comp_eq_comp_id}, end end category