/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Metric spaces. -/ import data.real.complete data.pnat data.list.sort data.fin open nat real eq.ops classical structure metric_space [class] (M : Type) : Type := (dist : M → M → ℝ) (dist_self : ∀ x : M, dist x x = 0) (eq_of_dist_eq_zero : ∀ {x y : M}, dist x y = 0 → x = y) (dist_comm : ∀ x y : M, dist x y = dist y x) (dist_triangle : ∀ x y z : M, dist x z ≤ dist x y + dist y z) namespace analysis section metric_space_M variables {M : Type} [metric_space M] definition dist (x y : M) : ℝ := metric_space.dist x y proposition dist_self (x : M) : dist x x = 0 := metric_space.dist_self x proposition eq_of_dist_eq_zero {x y : M} (H : dist x y = 0) : x = y := metric_space.eq_of_dist_eq_zero H proposition dist_comm (x y : M) : dist x y = dist y x := metric_space.dist_comm x y proposition dist_eq_zero_iff (x y : M) : dist x y = 0 ↔ x = y := iff.intro eq_of_dist_eq_zero (suppose x = y, this ▸ !dist_self) proposition dist_triangle (x y z : M) : dist x z ≤ dist x y + dist y z := metric_space.dist_triangle x y z proposition dist_nonneg (x y : M) : 0 ≤ dist x y := have dist x y + dist y x ≥ 0, by rewrite -(dist_self x); apply dist_triangle, have 2 * dist x y ≥ 0, using this, by krewrite [-real.one_add_one, right_distrib, +one_mul, dist_comm at {2}]; apply this, nonneg_of_mul_nonneg_left this two_pos proposition dist_pos_of_ne {x y : M} (H : x ≠ y) : dist x y > 0 := lt_of_le_of_ne !dist_nonneg (suppose 0 = dist x y, H (iff.mp !dist_eq_zero_iff this⁻¹)) proposition ne_of_dist_pos {x y : M} (H : dist x y > 0) : x ≠ y := suppose x = y, have H1 [visible] : dist x x > 0, by rewrite this at {2}; exact H, by rewrite dist_self at H1; apply not_lt_self _ H1 proposition eq_of_forall_dist_le {x y : M} (H : ∀ ε, ε > 0 → dist x y ≤ ε) : x = y := eq_of_dist_eq_zero (eq_zero_of_nonneg_of_forall_le !dist_nonneg H) /- convergence of a sequence -/ definition converges_to_seq (X : ℕ → M) (y : M) : Prop := ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ ⦃n⦄, n ≥ N → dist (X n) y < ε -- the same, with ≤ in place of <; easier to prove, harder to use definition converges_to_seq.intro {X : ℕ → M} {y : M} (H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → dist (X n) y ≤ ε) : converges_to_seq X y := take ε, assume epos : ε > 0, have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos, obtain N HN, from H e2pos, exists.intro N (take n, suppose n ≥ N, calc dist (X n) y ≤ ε / 2 : HN _ `n ≥ N` ... < ε : div_two_lt_of_pos epos) notation X `⟶` y `in` `ℕ` := converges_to_seq X y definition converges_seq [class] (X : ℕ → M) : Prop := ∃ y, X ⟶ y in ℕ noncomputable definition limit_seq (X : ℕ → M) [H : converges_seq X] : M := some H proposition converges_to_limit_seq (X : ℕ → M) [H : converges_seq X] : (X ⟶ limit_seq X in ℕ) := some_spec H proposition converges_to_seq_unique {X : ℕ → M} {y₁ y₂ : M} (H₁ : X ⟶ y₁ in ℕ) (H₂ : X ⟶ y₂ in ℕ) : y₁ = y₂ := eq_of_forall_dist_le (take ε, suppose ε > 0, have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos, obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y₁ < ε / 2), from H₁ e2pos, obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y₂ < ε / 2), from H₂ e2pos, let N := max N₁ N₂ in have dN₁ : dist (X N) y₁ < ε / 2, from HN₁ !le_max_left, have dN₂ : dist (X N) y₂ < ε / 2, from HN₂ !le_max_right, have dist y₁ y₂ < ε, from calc dist y₁ y₂ ≤ dist y₁ (X N) + dist (X N) y₂ : dist_triangle ... = dist (X N) y₁ + dist (X N) y₂ : dist_comm ... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂ ... = ε : add_halves, show dist y₁ y₂ ≤ ε, from le_of_lt this) proposition eq_limit_of_converges_to_seq {X : ℕ → M} {y : M} (H : X ⟶ y in ℕ) : y = @limit_seq M _ X (exists.intro y H) := converges_to_seq_unique H (@converges_to_limit_seq M _ X (exists.intro y H)) proposition converges_to_seq_constant (y : M) : (λn, y) ⟶ y in ℕ := take ε, assume egt0 : ε > 0, exists.intro 0 (take n, suppose n ≥ 0, calc dist y y = 0 : !dist_self ... < ε : egt0) proposition converges_to_seq_offset {X : ℕ → M} {y : M} (k : ℕ) (H : X ⟶ y in ℕ) : (λ n, X (n + k)) ⟶ y in ℕ := take ε, suppose ε > 0, obtain N HN, from H `ε > 0`, exists.intro N (take n : ℕ, assume ngtN : n ≥ N, show dist (X (n + k)) y < ε, from HN (n + k) (le.trans ngtN !le_add_right)) proposition converges_to_seq_offset_left {X : ℕ → M} {y : M} (k : ℕ) (H : X ⟶ y in ℕ) : (λ n, X (k + n)) ⟶ y in ℕ := have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite add.comm), by+ rewrite aux; exact converges_to_seq_offset k H proposition converges_to_seq_offset_succ {X : ℕ → M} {y : M} (H : X ⟶ y in ℕ) : (λ n, X (succ n)) ⟶ y in ℕ := converges_to_seq_offset 1 H proposition converges_to_seq_of_converges_to_seq_offset {X : ℕ → M} {y : M} {k : ℕ} (H : (λ n, X (n + k)) ⟶ y in ℕ) : X ⟶ y in ℕ := take ε, suppose ε > 0, obtain N HN, from H `ε > 0`, exists.intro (N + k) (take n : ℕ, assume nge : n ≥ N + k, have n - k ≥ N, from nat.le_sub_of_add_le nge, have dist (X (n - k + k)) y < ε, from HN (n - k) this, show dist (X n) y < ε, using this, by rewrite [(nat.sub_add_cancel (le.trans !le_add_left nge)) at this]; exact this) proposition converges_to_seq_of_converges_to_seq_offset_left {X : ℕ → M} {y : M} {k : ℕ} (H : (λ n, X (k + n)) ⟶ y in ℕ) : X ⟶ y in ℕ := have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite add.comm), by+ rewrite aux at H; exact converges_to_seq_of_converges_to_seq_offset H proposition converges_to_seq_of_converges_to_seq_offset_succ {X : ℕ → M} {y : M} (H : (λ n, X (succ n)) ⟶ y in ℕ) : X ⟶ y in ℕ := @converges_to_seq_of_converges_to_seq_offset M _ X y 1 H proposition converges_to_seq_offset_iff (X : ℕ → M) (y : M) (k : ℕ) : ((λ n, X (n + k)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) := iff.intro converges_to_seq_of_converges_to_seq_offset !converges_to_seq_offset proposition converges_to_seq_offset_left_iff (X : ℕ → M) (y : M) (k : ℕ) : ((λ n, X (k + n)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) := iff.intro converges_to_seq_of_converges_to_seq_offset_left !converges_to_seq_offset_left proposition converges_to_seq_offset_succ_iff (X : ℕ → M) (y : M) : ((λ n, X (succ n)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) := iff.intro converges_to_seq_of_converges_to_seq_offset_succ !converges_to_seq_offset_succ section open list definition r_trans : transitive (@le ℝ _) := λ a b c, !le.trans definition r_refl : reflexive (@le ℝ _) := λ a, !le.refl theorem dec_prf_eq (P : Prop) (H1 H2 : decidable P) : H1 = H2 := begin induction H1, induction H2, reflexivity, apply absurd a a_1, induction H2, apply absurd a_1 a, reflexivity end -- there's a very ugly part of this proof. proposition bounded_of_converges_seq {X : ℕ → M} {x : M} (H : X ⟶ x in ℕ) : ∃ K : ℝ, ∀ n : ℕ, dist (X n) x ≤ K := begin cases H zero_lt_one with N HN, cases em (N = 0), existsi 1, intro n, apply le_of_lt, apply HN, rewrite a, apply zero_le, let l := map (λ n : ℕ, -dist (X n) x) (upto N), have Hnenil : l ≠ nil, from (map_ne_nil_of_ne_nil _ (upto_ne_nil_of_ne_zero a)), existsi max (-list.min (λ a b : ℝ, le a b) l Hnenil) 1, intro n, have Hsmn : ∀ m : ℕ, m < N → dist (X m) x ≤ max (-list.min (λ a b : ℝ, le a b) l Hnenil) 1, begin intro m Hm, apply le.trans, rotate 1, apply le_max_left, note Hall := min_lemma real.le_total r_trans r_refl Hnenil, have Hmem : -dist (X m) x ∈ (map (λ (n : ℕ), -dist (X n) x) (upto N)), from mem_map _ (mem_upto_of_lt Hm), note Hallm' := of_mem_of_all Hmem Hall, apply le_neg_of_le_neg, esimp, esimp at Hallm', have Heqs : (λ (a b : real), classical.prop_decidable (@le.{1} real real.real_has_le a b)) = (@decidable_le.{1} real (@decidable_linear_ordered_comm_group.to_decidable_linear_order.{1} real (@decidable_linear_ordered_comm_ring.to_decidable_linear_ordered_comm_group.{1} real (@discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring.{1} real real.discrete_linear_ordered_field)))), begin apply funext, intro, apply funext, intro, apply dec_prf_eq end, rewrite -Heqs, exact Hallm' end, cases em (n < N) with Elt Ege, apply Hsmn, exact Elt, apply le_of_lt, apply lt_of_lt_of_le, apply HN, apply le_of_not_gt Ege, apply le_max_right end end /- cauchy sequences -/ definition cauchy (X : ℕ → M) : Prop := ∀ ε : ℝ, ε > 0 → ∃ N, ∀ m n, m ≥ N → n ≥ N → dist (X m) (X n) < ε proposition cauchy_of_converges_seq (X : ℕ → M) [H : converges_seq X] : cauchy X := take ε, suppose ε > 0, obtain y (Hy : converges_to_seq X y), from H, have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos, obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y < ε / 2), from Hy e2pos, obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y < ε / 2), from Hy e2pos, let N := max N₁ N₂ in exists.intro N (take m n, suppose m ≥ N, suppose n ≥ N, have m ≥ N₁, from le.trans !le_max_left `m ≥ N`, have n ≥ N₂, from le.trans !le_max_right `n ≥ N`, have dN₁ : dist (X m) y < ε / 2, from HN₁ `m ≥ N₁`, have dN₂ : dist (X n) y < ε / 2, from HN₂ `n ≥ N₂`, show dist (X m) (X n) < ε, from calc dist (X m) (X n) ≤ dist (X m) y + dist y (X n) : dist_triangle ... = dist (X m) y + dist (X n) y : dist_comm ... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂ ... = ε : add_halves) end metric_space_M /- convergence of a function at a point -/ section metric_space_M_N variables {M N : Type} [strucM : metric_space M] [strucN : metric_space N] include strucM strucN definition converges_to_at (f : M → N) (y : N) (x : M) := ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ≠ x ∧ dist x' x < δ → dist (f x') y < ε notation f `⟶` y `at` x := converges_to_at f y x definition converges_at [class] (f : M → N) (x : M) := ∃ y, converges_to_at f y x noncomputable definition limit_at (f : M → N) (x : M) [H : converges_at f x] : N := some H proposition converges_to_limit_at (f : M → N) (x : M) [H : converges_at f x] : (f ⟶ limit_at f x at x) := some_spec H /- continuity at a point -/ definition continuous_at (f : M → N) (x : M) := ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε theorem continuous_at_of_converges_to_at {f : M → N} {x : M} (Hf : f ⟶ f x at x) : continuous_at f x := take ε, suppose ε > 0, obtain δ Hδ, from Hf this, exists.intro δ (and.intro (and.left Hδ) (take x', suppose dist x' x < δ, if Heq : x' = x then by rewrite [-Heq, dist_self]; assumption else (suffices dist x' x < δ, from and.right Hδ x' (and.intro Heq this), this))) theorem converges_to_at_of_continuous_at {f : M → N} {x : M} (Hf : continuous_at f x) : f ⟶ f x at x := take ε, suppose ε > 0, obtain δ Hδ, from Hf this, exists.intro δ (and.intro (and.left Hδ) (take x', assume H : x' ≠ x ∧ dist x' x < δ, show dist (f x') (f x) < ε, from and.right Hδ x' (and.right H))) section omit strucN set_option pp.coercions true --set_option pp.all true open pnat rat section omit strucM theorem of_rat_rat_of_pnat_eq_of_nat_nat_of_pnat {p : pnat} : of_rat (rat_of_pnat p) = of_nat (nat_of_pnat p) := rfl end theorem cnv_real_of_cnv_nat {X : ℕ → M} {c : M} (H : ∀ n : ℕ, dist (X n) c < 1 / (real.of_nat n + 1)) : ∀ ε : ℝ, ε > 0 → ∃ N : ℕ, ∀ n : ℕ, n ≥ N → dist (X n) c < ε := begin intros ε Hε, cases ex_rat_pos_lower_bound_of_pos Hε with q Hq, cases Hq with Hq1 Hq2, cases pnat_bound Hq1 with p Hp, existsi nat_of_pnat p, intros n Hn, apply lt_of_lt_of_le, apply H, apply le.trans, rotate 1, apply Hq2, have Hrat : of_rat (inv p) ≤ of_rat q, from of_rat_le_of_rat_of_le Hp, apply le.trans, rotate 1, exact Hrat, change 1 / (of_nat n + 1) ≤ of_rat ((1 : ℚ) / (rat_of_pnat p)), rewrite [of_rat_divide, of_rat_one], eapply one_div_le_one_div_of_le, krewrite -of_rat_zero, apply of_rat_lt_of_rat_of_lt, apply rat_of_pnat_is_pos, krewrite [of_rat_rat_of_pnat_eq_of_nat_nat_of_pnat, -real.of_nat_add], apply real.of_nat_le_of_nat_of_le, apply le_add_of_le_right, assumption end end theorem all_conv_seqs_of_converges_to_at {f : M → N} {c : M} {l : N} (Hconv : f ⟶ l at c) : ∀ X : ℕ → M, ((∀ n : ℕ, ((X n) ≠ c) ∧ (X ⟶ c in ℕ)) → ((λ n : ℕ, f (X n)) ⟶ l in ℕ)) := begin intros X HX, rewrite [↑converges_to_at at Hconv, ↑converges_to_seq], intros ε Hε, cases Hconv Hε with δ Hδ, cases Hδ with Hδ1 Hδ2, cases HX 0 with _ HXlim, cases HXlim Hδ1 with N1 HN1, existsi N1, intro n Hn, apply Hδ2, split, apply and.left (HX _), exact HN1 Hn end theorem converges_to_at_of_all_conv_seqs {f : M → N} (c : M) (l : N) (Hseq : ∀ X : ℕ → M, ((∀ n : ℕ, ((X n) ≠ c) ∧ (X ⟶ c in ℕ)) → ((λ n : ℕ, f (X n)) ⟶ l in ℕ))) : f ⟶ l at c := by_contradiction (assume Hnot : ¬ (f ⟶ l at c), obtain ε Hε, from exists_not_of_not_forall Hnot, let Hε' := iff.mp not_implies_iff_and_not Hε in obtain (H1 : ε > 0) H2, from Hε', have H3 [visible] : ∀ δ : ℝ, (δ > 0 → ∃ x' : M, x' ≠ c ∧ dist x' c < δ ∧ dist (f x') l ≥ ε), begin -- tedious!! intros δ Hδ, note Hε'' := forall_not_of_not_exists H2, note H4 := forall_not_of_not_exists H2 δ, have ¬ (∀ x' : M, x' ≠ c ∧ dist x' c < δ → dist (f x') l < ε), from λ H', H4 (and.intro Hδ H'), note H5 := exists_not_of_not_forall this, cases H5 with x' Hx', existsi x', note H6 := iff.mp not_implies_iff_and_not Hx', rewrite and.assoc at H6, cases H6, split, assumption, cases a_1, split, assumption, apply le_of_not_gt, assumption end, let S : ℕ → M → Prop := λ n x, 0 < dist x c ∧ dist x c < 1 / (of_nat n + 1) ∧ dist (f x) l ≥ ε in have HS [visible] : ∀ n : ℕ, ∃ m : M, S n m, begin intro k, have Hpos : 0 < of_nat k + 1, from of_nat_succ_pos k, cases H3 (1 / (k + 1)) (one_div_pos_of_pos Hpos) with x' Hx', cases Hx' with Hne Hx', cases Hx' with Hdistl Hdistg, existsi x', esimp, split, apply dist_pos_of_ne, assumption, split, repeat assumption end, let X : ℕ → M := λ n, some (HS n) in have H4 [visible] : ∀ n : ℕ, ((X n) ≠ c) ∧ (X ⟶ c in ℕ), from (take n, and.intro (begin note Hspec := some_spec (HS n), esimp, esimp at Hspec, cases Hspec, apply ne_of_dist_pos, assumption end) (begin apply cnv_real_of_cnv_nat, intro m, note Hspec := some_spec (HS m), esimp, esimp at Hspec, cases Hspec with Hspec1 Hspec2, cases Hspec2, assumption end)), have H5 [visible] : (λ n : ℕ, f (X n)) ⟶ l in ℕ, from Hseq X H4, begin note H6 := H5 H1, cases H6 with Q HQ, note HQ' := HQ !le.refl, esimp at HQ', apply absurd HQ', apply not_lt_of_ge, note H7 := some_spec (HS Q), esimp at H7, cases H7 with H71 H72, cases H72, assumption end) definition continuous (f : M → N) : Prop := ∀ x, continuous_at f x theorem converges_seq_comp_of_converges_seq_of_cts [instance] (X : ℕ → M) [HX : converges_seq X] {f : M → N} (Hf : continuous f) : converges_seq (λ n, f (X n)) := begin cases HX with xlim Hxlim, existsi f xlim, rewrite ↑converges_to_seq at *, intros ε Hε, let Hcont := Hf xlim Hε, cases Hcont with δ Hδ, cases Hxlim (and.left Hδ) with B HB, existsi B, intro n Hn, cases em (xlim = X n), rewrite [a, dist_self], assumption, apply and.right Hδ, apply HB Hn end omit strucN theorem id_continuous : continuous (λ x : M, x) := begin intros x ε Hε, existsi ε, split, assumption, intros, assumption end end metric_space_M_N end analysis /- complete metric spaces -/ structure complete_metric_space [class] (M : Type) extends metricM : metric_space M : Type := (complete : ∀ X, @analysis.cauchy M metricM X → @analysis.converges_seq M metricM X) namespace analysis proposition complete (M : Type) [cmM : complete_metric_space M] {X : ℕ → M} (H : cauchy X) : converges_seq X := complete_metric_space.complete X H end analysis /- the reals form a metris space -/ noncomputable definition metric_space_real [instance] : metric_space ℝ := ⦃ metric_space, dist := λ x y, abs (x - y), dist_self := λ x, abstract by rewrite [sub_self, abs_zero] end, eq_of_dist_eq_zero := λ x y, eq_of_abs_sub_eq_zero, dist_comm := abs_sub, dist_triangle := abs_sub_le ⦄