/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.precategory.basic Authors: Floris van Doorn -/ open eq is_trunc namespace category structure precategory [class] (ob : Type) : Type := (hom : ob → ob → Type) (homH : Π(a b : ob), is_hset (hom a b)) (comp : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c) (ID : Π (a : ob), hom a a) (assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b), comp h (comp g f) = comp (comp h g) f) (id_left : Π ⦃a b : ob⦄ (f : hom a b), comp !ID f = f) (id_right : Π ⦃a b : ob⦄ (f : hom a b), comp f !ID = f) attribute precategory [multiple-instances] attribute precategory.homH [instance] infixr `∘` := precategory.comp -- input ⟶ using \--> (this is a different arrow than \-> (→)) infixl [parsing-only] `⟶`:25 := precategory.hom namespace hom infixl `⟶` := precategory.hom -- if you open this namespace, hom a b is printed as a ⟶ b end hom abbreviation hom := @precategory.hom abbreviation homH := @precategory.homH abbreviation comp := @precategory.comp abbreviation ID := @precategory.ID abbreviation assoc := @precategory.assoc abbreviation id_left := @precategory.id_left abbreviation id_right := @precategory.id_right section basic_lemmas variables {ob : Type} [C : precategory ob] variables {a b c d : ob} {h : c ⟶ d} {g : hom b c} {f f' : hom a b} {i : a ⟶ a} include C definition id [reducible] := ID a definition id_compose (a : ob) : ID a ∘ ID a = ID a := !id_left definition left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id := calc i = i ∘ id : id_right ... = id : H definition right_id_unique (H : Π{b} {f : hom a b}, f ∘ i = f) : i = id := calc i = id ∘ i : id_left ... = id : H definition homset [reducible] (x y : ob) : hset := hset.mk (hom x y) _ definition is_hprop_eq_hom [instance] : is_hprop (f = f') := !is_trunc_eq end basic_lemmas structure Precategory : Type := (carrier : Type) (struct : precategory carrier) definition precategory.Mk [reducible] {ob} (C) : Precategory := Precategory.mk ob C definition precategory.MK [reducible] (a b c d e f g h) : Precategory := Precategory.mk a (precategory.mk b c d e f g h) abbreviation carrier := @Precategory.carrier attribute Precategory.carrier [coercion] attribute Precategory.struct [instance] [priority 10000] [coercion] -- definition precategory.carrier [coercion] [reducible] := Precategory.carrier -- definition precategory.struct [instance] [coercion] [reducible] := Precategory.struct notation g `∘⁅` C `⁆` f := @comp (Precategory.carrier C) (Precategory.struct C) _ _ _ g f -- TODO: make this left associative -- TODO: change this notation? definition Precategory.eta (C : Precategory) : Precategory.mk C C = C := Precategory.rec (λob c, idp) C end category open category