/- Copyright (c) 2014 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: truncation Authors: Jakob von Raumer -/ open is_trunc -- Axiomatize the truncation operator as long as we do not have -- Higher inductive types axiom truncate (A : Type) (n : trunc_index) : Type axiom truncate.mk {A : Type} (n : trunc_index) (a : A) : truncate A n axiom truncate.is_trunc (A : Type) (n : trunc_index) : is_trunc n (truncate A n) axiom truncate.rec_on {A : Type} {n : trunc_index} {C : truncate A n → Type} (ta : truncate A n) [H : Π (ta : truncate A n), is_trunc n (C ta)] (CC : Π (a : A), C (truncate.mk n a)) : C ta