import logic data.nat.basic open nat inductive vector (A : Type) : nat → Type := | vnil : vector A zero | vcons : Π {n : nat}, A → vector A n → vector A (succ n) namespace vector definition no_confusion2 {A : Type} {n : nat} {P : Type} {v₁ v₂ : vector A n} : v₁ = v₂ → vector.no_confusion_type P v₁ v₂ := assume H₁₂ : v₁ = v₂, begin show vector.no_confusion_type P v₁ v₂, from have aux : v₁ = v₁ → vector.no_confusion_type P v₁ v₁, from take H₁₁, begin apply (vector.cases_on v₁), exact (assume h : P, h), intros (n, a, v, h), apply (h rfl), repeat (apply rfl), repeat (apply heq.refl) end, eq.rec_on H₁₂ aux H₁₂ end theorem vcons.inj₁ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → a₁ = a₂ := begin intro h, apply (vector.no_confusion h), intros, assumption end theorem vcons.inj₂ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → v₁ == v₂ := begin intro h, apply (vector.no_confusion h), intros, eassumption end end vector