import logic inductive nat : Type := | zero : nat | succ : nat → nat definition add (x y : nat) : nat := nat_rec x (λn r, succ r) y infixl `+`:65 := add axiom add_right_comm (n m k : nat) : n + m + k = n + k + m print "===========================" theorem bug (a b c d : nat) : a + b + c + d = a + c + b + d := subst (add_right_comm _ _ _) (refl (a + b + c + d))